• Title/Summary/Keyword: Solvent Effect

Search Result 1,837, Processing Time 0.028 seconds

Preparation of Ni(OH)2 Hollow Spheres by Solvent Displacement Crystallization Using Micro-Injection Device (마이크로 주입장치를 이용한 용매치환결정화에 의한 중공상 수산화니켈 분말의 제조)

  • Kim, Seiki;Park, Kyungsoo;Jung, Kwang-Il
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • $Ni(OH)_2$ hollow spheres have been prepared by solvent displacement crystallization using a micro-injection device, and the effect of process parameters such as concentration and the relative ratio of the injection speed of the precursor solution, which is an aqueous solution of $NiSO_4{\cdot}6H_2O$, to isopropyl alcohol of displacement solvent have been investigated. The crystal phases after NaOH treatment are in the ${\beta}-phase$ for all process parameters. A higher concentration of $NiSO_4{\cdot}6H_2O$ aqueous solution is injected by a micro-injection device and bigger $Ni(OH)_2$ hollow spheres with a narrower particle size distribution are formed. The crystallinity and hardness of the as-obtained powder are so poor that hydrothermal treatment of the as-obtained $Ni(OH)_2$ at $120^{\circ}C$ for 24 h in distilled water is performed in order to greatly improve the crystallinity. It is thought that a relative ratio of the injection speed of $NiSO_4{\cdot}6H_2O$ to that of isopropyl alcohol of at least more than 1 is preferable to synthesize Ni(OH)2 hollow spheres. It is confirmed that this solution-based process is very effective in synthesizing ceramic hollow spheres by simple adjustment of the process parameters such as the concentration and the injection speed.

Effect of Coagulating Conditions on the Morphology of Membrane and Drug Being Impregnated (응고화 경로가 고분자막 및 함침 약제 형상 변화에 미치는 영향의 분석)

  • 한명진;남석태;이재훈
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.151-160
    • /
    • 2001
  • Polymeric membranes consisting of poly(d,1-lactide) as a polymer matrix and crystallizable progesterone as a drug were prepared by coagulating polymeric solutions. The homogeneous casting solutions in dimethyformamide were solidified by using three different coagulating processes : solvent evaporation under vacuum, solvent extraction via immersion into the nonsolvent bath, or vapor exposure at high humidity condition. With solvent removal via evaporation under vacuum, the cast solution film was vitrified to form a homogeneous film containing progesterone of spherical shape distributed evenly in the film. Being prepared by solvent extraction via immersion into a water bath, the resulting membrane showed an asymmetric structure, with progesterone of big crystallites distributed unevenly in the structure. On the other hand, the coagulation under high humidity transformed the cast film into a sponge-like structure, where progesterone took a shape like flake.

  • PDF

Antioxidant Activity of Various Solvent Extracts from Freeze Dried Kimchi (김치 용매 추출물의 항산화성)

  • 이영옥;최홍식
    • Journal of Life Science
    • /
    • v.6 no.1
    • /
    • pp.66-71
    • /
    • 1996
  • Antioxidative activity of various solvent extracts from freeze dried Kimchi was studied during the oxidation process of linoleic acid mixture system. The aqueous model systems were used for the evaluation of antioxidative activity of solvent extracts during the oxidative reaction at 37$^{\circ}C$ by the determination of peroxide value. The linoleic acid mixture for the aqueous model systems was consisted of linoleic acid (64.6%), oleic acid(27.4%), and other acids in ethanolic phosphate buffer (pH 7.0). Water and methanol extracts of Kimchi had a considerable antioxidative activity with the inhibition of peroxides formation during the autoxidation of linoleic acid mixture in aqueous model systems. Antioxidative activity of 75% methanol extract of 7 day-fermented-Kimchi was relatively higher than that of others, however lower than alpa-tocopherol and butylated hydroxyanisol. The antioxidative effect of 75% methanol extract of 7 day-fermented-Kimchi was increased by the its concentration from 0.5% to 2.5% in the oxidation reactions of aqueous model systems.

  • PDF

The Effect of Fatty Acids, Fatty Alcohols and Propylene Glycol on the Penetration of Clenbuterol through Hairless Mouse Skin (지방산, 지방 알코올 및 프로필렌글리콜이 클렌부테롤의 경피투과에 미치는 영향)

  • Lee, Yeong-Dae;Quan, Qi-Zhe;Jung, Si-Young;Rhee, Jong-Dal;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.329-335
    • /
    • 1999
  • Clenbuterol, a selective ${\beta}_2-adrenergic$ receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic bronchitis and pulmonary emphysema. For the purpose of developing a transdermal preparation for clenbuterol, we attempted to select an optimal solvent system and permeation enhancer among fatty acids and fatty alcohols which are known to accelerate the penetration of various drugs in permeation experiments using hairless mouse skin and Franz diffusion cell. Apparent partition coefficient of clenbuterol was increased as pH of buffer solution was increased and solubility of clenbuterol was increased as the percent of propylene glycol(PG) in buffer solution(pH 10) was increased. Permeability of clenbuterol from different buffer(pH 10)/PG solvent mixtures was decreased as the percent of PG in pH 10 buffer solution was increased and among the various enhancers studied, lauryl alcohol was found to be the most effective enhancer, increasing the permeability of clenbuterol approximately 76-fold compared with control. Lauryl alcohol$(0{\sim}2%)$ enhanced the permeability of clenbuterol concentration-dependently. In this study, the optimal solvent system for the penetration of clenbuterol was found to be 50/50 buffer(pH 10)/PG solvent mixture containing 2% lauryl alcohol.

  • PDF

The Development of Automatic Chemical Processing System for $^{67}Ga$ Production ($^{67}Ga$ 생산용 화학처리 자동화 장치 개발)

  • Lee, Dong-Hoon;Kim, Yoon-Jong;Suh, Yong-Sup;Yang, Seung-Dae;Chun, Kwon-Soo;Hur, Min-Goo;Yun, Yong-Ki;Hong, Seung-Hong
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • The automatic system for $^{67}Ga$ production using for the diagnosis of malignant tumor has been developed. A solvent extraction and an ion exchange chromatography were used for the separation $^{67}Ga$ from the irradiated enriched $^{68}Zn$. This system consisted of a solvent separation unit which was composed of micro conductivity cells, air supply tubes, solvent transfer tubes, solenoid valves and glasses, a PLC based controller and a PMU user interface unit for automation. The radiation exposure to the workers and the production time can both be reduced by employing this system during the $^{67}Ga$ production phase. After all, the mass production of $^{67}Ga$ with high efficiency was possible.

Effect of Acetylation on Conformation of Glycinin (아세틸화가 Glycinin의 구조에 미치는 영향)

  • Kim, Kang-Sung;Rhee, Joon-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.714-720
    • /
    • 1989
  • Effects of acetylation on conformational changes of glycinin was studied using solvent perturbation, second derivative spectroscopy, near uv circular dichroism spectra and viscosity. Glycinin with purity of more than 93% was used for the experiment. Modification was carried out with acetic anhydride and glycinin with lysine residue modification of 0%, 28%, 65%, 85%, and 95% were used for the experiment. The result of solvent perturbation using some selected perturbants, such as glycerol, ethylene glycol, and dimethyl sulfoxide revealed that acetylation has caused increase In solvent accessibility of tyrosine residues from less than 40% in native protein to more than 70% for 95% acetylated glycinin. This was confirmed by second derivative spectroscopy. Near ultraviolet circular dichroism revealed that the spectra of native and acetylated glycinin were almost identical differing only in intensity and no other useful information could be derived from it. However, in the case of 95% acetylated glycinin the influence of tryptophan on the spectrum was more pronounced Specific viscosity of glycinin also increased by modification, the extent of which depended upon the degree of acetylation. These results supported that acetylation had caused globular conformation of glycinin to be expanded and denatured.

  • PDF

Effect on Computerized Neurobehavioral Test Performance of the Car Painters Exposed to Organic Solvents (자동차 페인트 도장공에 있어서 컴퓨터를 이용한 신경행동검사 수행기능의 평가)

  • Sa, Kong-Joon;Chung, Jong-Hak
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.3 s.47
    • /
    • pp.487-504
    • /
    • 1994
  • A cross-sectional study was performed to evaluate the effects of chronic low-dose solvent on neurobehavioral performance of 118 male car painters. A control group of 113 workers matched for age was selected from different sections of the factory. The mean age and the mean duration of employment were 33 years and 6.7 years in both groups. Mean years of education were 11.4 years in car painters and 11.8 years in controls. Each worker completed a medical and occupational questionnaire and four tests of Swedish performance evaluation system. These included simple reaction time, symbol digit, digit span and finger tapping speed. Althougth the mean duration of employment was 6.7 years, comparison of mean performance showed a significantly poorer performance on simple reaction time (p<0.05), symbol digit(p<0.01) and digit span(p<0.05) in car painters. In univariate analysis, age and educational level contributed to poorer performance on symbol digit and digit span. Smoking appeared to slow finger tapping speed in car painters. Performance of four tests of car painters exposed to high level of solvent was poorer than that of car painters exposed to low level. In multiple regression models, controlling for age, alcohol, smoking and shift work, solvent exposure was found to be associated with performance of simple reaction time, symbol digit and digit span and exposure to high level of solvent was related to poorer performance of symbol digit and digit span.

  • PDF

Properties of the Microinterface formed by Phosphatidylcholine and 1-Butanol as Reaction Media of Hydrolysis of Phosphatidylcholine

  • Yamazaki, Keiju;Imai, Masanao;Suzuki, Isao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.82-85
    • /
    • 2004
  • Microinterface of W/Omicroemulsion prepared by phosphatidylcholine was used as reaction media of hydrolysis of phosphatidylcholine by phospholipaseA$_2$. Phosphatidylcholine was used as an amphiphile and was acted as a substrate. Organic phase of W/Omicroemulsion in this study was prepared by mixed organic solvents i.e. 2,2,4-trimethylpentane (isooctane) as a main solvent and 1-butanol as a co-solvent. The effect of added 1-butanol was remarkable not only on reaction beginning but also on high reaction rate. The hydrolysis reaction was dramatically initiated when 1-butanol was injected into the running isooctane/PC system. The enhancement by 1-butanol addition into single organic solvent was our original finding compare with previous conventional organic solvent. The reaction rate was elevated by the added amount of 1-butanol. The enhanced reaction rate was about 150-folds. This enhancement was speculated as 1-butanol adsorption on the microinterface. The adsorbed 1-butanol improved the properties of microinterface, especially its mobility was increased by difference of the chain length between phosphatidylcholine and 1-butanol. PhospholipaseA$_2$ molecules were located on the microinterface due to modified mobility of microinterface. Located phospholipaseA$_2$ on the microinterface reacted easily with phosphatidylcholine molecule. As a result high reaction rate was obtained. Microinterfacial properties were successfully improved by adsorbed 1-butanol molecule, and were favorable to appear higher reactivity of phospholipaseA$_2$.

  • PDF

Screening of Functional Materials from Solvent Fractions of Apple Flower Leaf Extract (사과꽃잎 추출물의 용매 분획으로부터 기능성 소재의 탐색)

  • Choi, Sun-Ju;Cho, Eun-Ah;Cho, Eun-Hye;Jeong, Yoon-Joo;Ku, Chang-Sub;Ha, Byung-Jhip;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2011
  • Fractional solvent extraction by organic solvents such as hexane, chloroform, ethylacetate, and butanol was carried out using 70% ethanol extract of apple flower leaves. Biological activities including antioxidant, whitening, antimicrobial and anti-wrinkle activities were investigated and bio-active materials of the extracts were identified using GC/MSD. Among the tested solvent fractions, ethylacetate fraction showed the highest total polyphenol content (1218.94 ${\mu}g/mL$), and flavonoid (140 ${\mu}g/mL$). The DPPH radical scavenging activities was over 80% at a dry matterbased concentration of 200 ${\mu}g/{\mu}L$ and SOD-like activity was over 90% at 50 ${\mu}g/mL$ concentration in ethylacetate fraction that was slightly lower than of ascorbic aicd. Tyrosinase inhibition activity related to skin-whitening was over 60% by ethylacetate fraction of 100 ${\mu}g/mL$. As an anti-aging effect, elastase inhibitory activity was about 45% in ethylacetate fraction. Also, it showed a significantly antimicrobial activity against P. acenes. From GC/MSD analysis, a characteristic peak of high content in ethylacetate fraction was identified as kaempferol, which has been reported as a bioactive compound.

Effect of Water Content on the Morphology of ZnO Powders Synthesized in Binary Solvent Mixtures by Glycol Process

  • Phimmavong, Kongsy;Song, Jeong-Hwan;Cho, Seung-Beom;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.211-216
    • /
    • 2017
  • ZnO nanopowder was synthesized using a relatively facile and convenient glycol process. ZnO nanopowder was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate as the Zn source and 1,4-butanediol as the solvent. Then, the effects of water content on the growth process and morphological evolution of ZnO powders were investigated using 1,4-butanediol and water as binary solvent mixtures. Using pure 1,4-butanediol at a temperature above $125^{\circ}C$, the prepared hexagonal ZnO nanopowder exhibited a quasi-spherical shape with average crystalline size of approximately 30 - 50 nm. It is also demonstrated that the morphology of ZnO powders can be controlled by the addition of various water content in 1,4-butanediol. With increasing water content, the morphologies of the ZnO powders changed sequentially from quasi-spherical to hexagonal plate and pyramid, and finally to hexagonal prismatic with a pyramidal tip. A sharp peak centered at 384 nm in the UV region and a weak broad peak in the visible region between 450 and 700 nm were shown in the room temperature PL spectra of the ZnO synthesized using the glycol process, regardless of the addition of water, suggesting that ZnO nanopowders with the best crystallinity were obtained under these conditions.