• 제목/요약/키워드: Solvent Decomposition

검색결과 125건 처리시간 0.022초

초임계 반용매 재결정 공정을 이용한 Dextran 입자의 제조 (Preparation of Dextran Microparticles by Using the SAS Process)

  • 강동육;민병준;노선균;강춘형
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.958-964
    • /
    • 2008
  • 본 연구에서는 초임계 이산화탄소를 반용매로 하는 재결정 공정(SAS, Supercritical Anti-Solvent)을 이용하여 약물 전달시스템의 후보물질로 주목받고 있는 dextran의 미립자를 제조하였다. 용매로는 DMSO(dimethyl sulfoxide)를 사용하였으며, 공정변수인 온도(308.15~323.15 K), 압력(90~130 bar), 용질의 농도(10~20 mg/ml), 용액 주입속도(5.3~15.2 ml/min) 그리고 용질의 분자량(Mw=37,500, 400,000~500,000)이 미세입자 형성에 미치는 영향을 관찰하였다. 형성되는 미세입자의 크기는 용질 농도가 증가할수록 증가하였으나, 용액 주입속도와 압력은 입자 크기에 큰 영향을 미치지 않았다. 저분자량의 dextran의 경우에는 313.15 K에서 가장 작은 입자가 만들어졌으며, 고분자량의 dextran의 경우에는 $0.1{\sim}0.5{\mu}m$정도 크기의 입자가 만들어 졌으며 온도와 압력이 커질수록 입자의 크기도 증가하였다. 용질의 농도가 5 mg/ml인 경우, 분자량이 작은 dextran 으로는 입자를 제조할 수 없었으며 고분자량의 경우에는 용질 농도가 15 mg/ml 까지 증가하면 제조된 입자들이 서로 엉키는 경향을 보였다. 분자량이 작은 경우에는 낮은 농도에서는 재결정조에서 충분한 과포화도를 얻을 수 없어 침투성과 확산계수가 큼에도 불구하고 재결정화가 이루어지지 못하며, 분자량이 큰 고분자계의 높은 농도에서는 서로 상호작용하는 인력이 저분자에 비해 크게 증가하게 되어 입자들이 엉키게 되는 것으로 사료된다.

Structural Characteristics and Properties of Silk Fibroin/Polyurethane Blend Films

  • Um, In-Chul;Kweon, Hae-Yong;Chang mo Hwang;Min, Byung-Goo;Park, Young-Hwan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제5권2호
    • /
    • pp.163-170
    • /
    • 2002
  • In this paper, silk fibroin (SF)/polyurethane (PU) blend films were fabricated to develop a new biomaterial for biomedical applications. These blend films were prepared using formic acid as a cosolvent, and structural characteristics and properties of blend films were investigated. FTIR results suggested that there was no specific interaction between SF and PU, implying molecular immiscibility in SF/PU blend films. Furthermore, it was revealed by XRD method that the crystalline region of blend components was not perturbed by counterpart polymers. The degree of phase separation of SF/PU blend films was diminished by increasing PU content in blend. Especially, the blend with 70% content of PU showed no evidence of macro-phase separation in SEM observation. However, SF/PU blend (70/30) was revealed to be phase-separated in a lower dimension confirmed by DMTA measurement. TGA result showed that thermal decomposition temperature of blend film was slightly decreased compared to those of SF and PU polymer itself, Though mechanical properties of SF/PU blend films were not good enough due to the solvent, blood compatibility of PU can be enhanced markedly by mixing with SF for SF/PU blend film.

Capillary Assembly of Silicon Nanowires Using the Removable Topographical Patterns

  • Hong, Juree;Lee, Seulah;Lee, Sanggeun;Seo, Jungmok;Lee, Taeyoon
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.509-514
    • /
    • 2014
  • We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 춘계 총회 및 학술발표회
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

Computational Study on OH and Cl Initiated Oxidation of 2,2,2-Trifluoroethyl Trifluoroacetate (CF3C(O)OCH2CF3)

  • Singh, Hari Ji;Tiwari, Laxmi;Rao, Pradeep Kumar
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1385-1390
    • /
    • 2014
  • Hydrofluoroethers (HFEs) are developed as a suitable for the replacement of environmentally hazardous CFCs and are termed as third generation refrigerants. One of the major products of decomposition of HFEs in the atmosphere is a fluoroester. The present study relates to the OH and Cl initiated oxidation of $CF_3C(O)OCH_2CF_3$ formed from the oxidation of HFE-356mff. The latter is used as a solvent in the industry and reaches the atmosphere without any degradation. Kinetics of the titled molecule has been studied at MPWB1K/6-31+G(d,p) level of theory. Single point energy calculations have been made at G2(MP2) level of theory and barrier heights are determined. The rate constants are calculated using canonical transition state theory. Tunnelling correction are made using one-dimensional Eckart potential barrier. The rate constant calculated during the present study are compared with the experimental values determined using relative rate method and FTIR detection technique.

Synthesis and Characterization of Upconversion Nanoparticles for Cancer Therapy

  • 최승유;김보배;김은비;이승우;전선아;박태정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.420.2-420.2
    • /
    • 2016
  • Various fields have been paid attention to upconversion nanoparticles (UCNPs) because of its unique optical properties. Moreover, to use the UC luminescent techniques through cell images for identified apoptosis/necrosis of cancer cells have been performed. They have been studied for a versatile biomedical application such as a biosensing tool, or delivery of active forms of medicines inside living cells. UCNPs have distinctive characteristics such as photoluminescence, special emission, low background fluorescence signal and good colloidal stability, which have many advantages compared with the organic dyes and quantum dots. UCNPs have not only a great potential for imaging (UC luminescence) but also therapies (photo-thermal therapy, PTT and photo-dynamic therapy, PDT) in cancer diagnostics. Therefore, we report the enhancement of upconversion red emission in NaYF4:Yb3+,Er3+ nanoparticles, synthesized via solid-state method with the thermal decomposition of trifluoroacetate as precursors and organic solvent at a high boiling point. The UCNPs have an emission in the field of near infrared wavelength, cubic shape and nano-size in length. In this study, we will further investigate it for cancer therapy with NIR optical detection onto the solid substrate.

  • PDF

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.156-160
    • /
    • 2011
  • FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.

Properties and Photocatalytic Activity of Pitch-binded ACF/TiO2Composites

  • Oh, Won-Chun;Jung, Ah-Reum
    • 한국세라믹학회지
    • /
    • 제45권3호
    • /
    • pp.150-156
    • /
    • 2008
  • Pitch-binded activated carbon fiber(ACF)/$TiO_2$ composite photocatalysts were prepared by Carbon Tetra Chloride (CTC) solvent mixing method with different mixing ratios of anatase to ACF. The result of the textural surface properties demonstrated that there is a slight increase in the Brunauer, Emmett and Teller (BET) surface area of composites with an increase of the amount of ACF. The surfaces structure morphologies of the composites were observed using an Scanning Electron Microscope (SEM). In the XRD patterns for all ACF/$TiO_2$ composites, the diffraction peaks showed the formation of anatase crystallites. The EDX spectra showed the presence of C, O and Si with strong Ti peaks. Most of these samples were richer in carbon and major Ti metal than any other elements. From the photo-decomposition results, the excellent activity of the ACF/$TiO_2$ composites between c/$c_0$ for methylene blue and UV irradiation time could be attributed to both the effects of the photocatalysis of the supported $TiO_2$ and adsorptivity of activated carbon fiber and another carbon derived from pitch.

PAHs(Polynuclear Aromatic Hydrocarbons)에 오염된 토양 회복공정으로서 마이크로파의 적용성 검토연구 (Applicability on Microwave Technology to the Remediation of PAHs(Polynuclear Aromatic Hydrocarbons) Contaminated Soil)

  • 문경환;변자진;김덕찬
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.102-112
    • /
    • 1998
  • The fate of polynuclear aromatic hydrocarbons(PAMs) in soil has drawn increasing concern due to their toxic, carcinogenic, and mutagenic effects. These compounds have been most commonly carried into the soil in solvent, as in a coal tar or cresote. This study has been focused on the applicability of microwave treatment of soils contaminated by PAHs. Studies have been conducted with soil(particle diameter $150~500{\mu}m$), which was spiked with naphthalene, acenaphthene, fluorene, anthracene and pyrene, with different moisture contents. According to the results of the research, up to 95% removal efficiency of naphthalene was observed in 10% moisturized soil for five minutes microwave inducing And the removal efficiency of acenaphthene and fluorene were observed to be 88.9%, 67.2% in 30% moisturized soil, respectively. Due to the low vapor pressure, anthracene and pyrene showed the low removal efficiency. In case the powdered activated carbon was added to the soil as a sensitizer, anthracene and pyrene were decomposed into a various by-products. Decomposition rates of anthracene and pyrene were increased with incresing addition of a PAC to the soil. It is concluded that the developement of a microwave process to remediate soils contaminated with PAHs is foreseeable. But additional studies are also needed regarding continuous microwave heating process.

  • PDF

요소와 암모니움 카바메이트 수용액의 FTIR 분석 (FTIR Analysis of the Aqueous Solutions of Urea and Ammonium Carbamate(AC))

  • 변홍식
    • 공업화학
    • /
    • 제5권4호
    • /
    • pp.657-661
    • /
    • 1994
  • FTIR을 이용하여 암모니움 카바메이트와 요소의 혼합액은 물론, 각각의 농도를 분석하는 방법을 연구하였다. 본 연구에서는 15% w/v암모니아 용액을 용매로 이용하여 암모니움 카바메이트 수용액에서 발생하는 ammonium bicarbonate의 생성을 억제하였으며, 평형위치에 대한 오차를 1% 미만으로 유지하였다. $1600cm^{-1}$에서의 N-H bending에 의한 요소 흡수 피크와 $1405cm^{-1}$에서의 symmetric carboxylate ion stretch에 의한 암모니움 카바메이트 흡수 피크를 이용하여 보정 그래프를 그린 후 농도 계산식을 만들었다. 농도 측정간에 대한 오차는 암모니움 카바메이트에 대하여 ${\pm}0.1%$ w/v이었으며, 요소에 대하여 ${\pm}0.3%$ w/v이었다.

  • PDF