• Title/Summary/Keyword: Solvation structure

Search Result 32, Processing Time 0.022 seconds

Discovery of Novel DUSP4 Inhibitors through the Virtual Screening with Docking Simulations

  • Park, Hwangseo;Jeon, Tae Jin;Chien, Pham Ngoc;Park, So Ya;Oh, Sung Min;Kim, Seung Jun;Ryu, Seong Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2655-2659
    • /
    • 2014
  • Dual specificity protein phosphatase 4 (DUSP4) has been considered a promising target for the development of therapeutics for various human cancers. Here, we report the first example for a successful application of the structure-based virtual screening to identify the novel small-molecule DUSP4 inhibitors. As a consequence of the virtual screening with the modified scoring function to include an effective molecular solvation free energy term, five micromolar DUSP4 inhibitors are found with the associated $IC_{50}$ values ranging from 3.5 to $10.8{\mu}M$. Because these newly identified inhibitors were also screened for having desirable physicochemical properties as a drug candidate, they may serve as a starting point of the structure-activity relationship study to optimize the medical efficacy. Structural features relevant to the stabilization of the new inhibitors in the active site of DUSP4 are discussed in detail.

Computational Analysis of the 3-D structure of Human GPR87 Protein: Implications for Structure-Based Drug Design

  • Rani, Mukta;Nischal, Anuradha;Sahoo, Ganesh Chandra;Khattri, Sanjay
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7473-7482
    • /
    • 2013
  • The G-protein coupled receptor 87 (GPR87) is a recently discovered orphan GPCR which means that the search of their endogenous ligands has been a novel challenge. GPR87 has been shown to be overexpressed in squamous cell carcinomas (SCCs) or adenocarcinomas in lungs and bladder. The 3D structure of GPR87 was here modeled using two templates (2VT4 and 2ZIY) by a threading method. Functional assignment of GPR87 by SVM revealed that along with transporter activity, various novel functions were predicted. The 3D structure was further validated by comparison with structural features of the templates through Verify-3D, ProSA and ERRAT for determining correct stereochemical parameters. The resulting model was evaluated by Ramachandran plot and good 3D structure compatibility was evidenced by DOPE score. Molecular dynamics simulation and solvation of protein were studied through explicit spherical boundaries with a harmonic restraint membrane water system. A DRY-motif (Asp-Arg-Tyr sequence) was found at the end of transmembrane helix3, where GPCR binds and thus activation of signals is transduced. In a search for better inhibitors of GPR87, in silico modification of some substrate ligands was carried out to form polar interactions with Arg115 and Lys296. Thus, this study provides early insights into the structure of a major drug target for SCCs.

Toward the Virtual Screening of α-Glucosidase Inhibitors with the Homology-Modeled Protein Structure

  • Park, Jung-Hum;Ko, Sung-Min;Park, Hwang-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.921-927
    • /
    • 2008
  • Discovery of $\alpha$-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate mediated diseases. As a method for the discovery of new novel inhibitors of $\alpha$-glucosidase, we have addressed the performance of the computer-aided drug design protocol involving the homology modeling of $\alpha$-glucosidase and the structure-based virtual screening with the two docking tools: FlexX and the automated and improved AutoDock implementing the effects of ligand solvation in the scoring function. The homology modeling of $\alpha$-glucosidase from baker’s yeast provides a high-quality 3-D structure enabling the structure-based inhibitor design. Of the two docking programs under consideration, AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands to the extent of 5-fold enhancement of hit rate in database screening when 1% of database coverage is used as a cutoff. A detailed binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of $\alpha$- glucosidase through the simultaneous establishment of the multiple hydrogen bond and hydrophobic interactions. The present study demonstrates the usefulness of the automated AutoDock program with the improved scoring function as a docking tool for virtual screening of new $\alpha$-glucosidase inhibitors as well as for binding mode analysis to elucidate the activities of known inhibitors.

Ab Initio Study on Complexes of Potassium with Methanol and Ethanol (메탄올과 에탄올의 K+착물에 대한 Ab Initio 연구)

  • Seong, Eun-Mo;Hwang, Ho-Jun
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.203-207
    • /
    • 2006
  • Ab initio calculations of the structure and the binding energies of K+(C2H5OH)n, (n=1~5) complexes were carried out with MP2/ full gen 6d and MP2/ 6-311G** methods. The stable structures of the complexes with n=2 to 5 were linear, trigonal, tetrahedral and trigonal bipyramid respectively. The binding energies of complexes were increased with the number of ligands, but the incremental binding energies were decreased. These results agreed well with the results of K+ complexes with other solvents.

CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids

  • Palgunadi, Jelliarko;Im, Jin-Kyu;Kang, Je-Eun;Kim, Hoon-Sik;Cheong, Min-Serk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.146-150
    • /
    • 2010
  • A distinguished class of hydrophobic ionic liquids bearing a Br${\o}$nsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and $\varepsilon$-caprolactam with trifluoroacetic acid and physical absorptions of $CO_2$ in these ionic liquids were demonstrated and evaluated. $CO_2$ solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that $CO_2$ solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility.

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters

  • Kim, Ji-Hun;Yi, Jong-Jae;Won, Hyung-Sik;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.139-143
    • /
    • 2018
  • Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.

Influence of Ammonia Solvation on the Structural Stability of Ethylene Cluster Ions

  • Jung Kwang Woo;Choi Sung-Seen;Jung Kwang Woo;Hang Du-Jeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.306-311
    • /
    • 1992
  • The stable structures of pure ethylene and mixed ethylene-ammonia cluster ions are studied using an electron impact ionization time-of-flight mass spectrometer. Investigations on the relative cluster ion distributions of $(C_2H_4)_n(NH_3)_m^+$ under various experimental conditions suggest that $(C_2H_4)_2(NH_3)_3^+$ and $(C_2H_4)_3(NH_3)_2^+$ ions have the enhanced structural stabilities, which give insight into the feasible structure of solvated ions. For the stable configurations of these ionic species, we report an experimental evidence that both $(C_2H4)_2^+(C_2H_4)_3^+$ clusters as the central cations provide three and two hydrogen-bonding sites, respectively, for the surrounding $NH_3$ molecules. This interpretation is based on the structural stability for ethylene clusters and the intracluster ion-molecular rearrangement of the complex ion under the presence of ammonia solvent molecules.

The Role of Vibrational Coherency in Ultrafast Reaction Dynamics of PYP

  • Chosrowjan, Haik;Mataga, Noboru;Taniguchi, Seiji;Shibata, Yutaka;Hamada, Norio;Tokunaga, Fumio;Imamoto, Yasushi;Kataoka, Mikio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.122-125
    • /
    • 2002
  • Coherent oscillations in is fluorescence dynamics of W.-t. PYP and its site-directed mutants have been observed. Two oscillatory modes coupled with the ultrafast fluorescence due to the twisting of the excited chromophore were identified, a high ftequency mode (∼135 cm$\^$-1/) with ∼550 is damping time and a low frequency overdamped mode (-45 cm$\^$-1/) with ∼250 is damping time, respectively. Both modes disappear in the fluorescence dynamics of denatured PYP emphasizing the important role of the protein nanospace as the environment for photoreaction. The qualitative picture of fluorescence dynamics in site-directed mutants was rather similar to that in W.-t. PYP, i.e., similar oscillatory modes (∼130-140 cm$\^$-1/ and ∼40-70 cm$\^$-1/) have been observed. This indicates that the vibrational modes and electron-vibration couplings do not change dramatically due to the mutation though the damping time of low frequency mode a little decreases as the protein nanospace structure becomes looser and more disordered by mutation. On the other hand, in the case of some PYP analogues, the qualitative picture of fluorescence dynamics changes, showing the familiar picture of solvation effect whereas the oscillations are almost damped. Comparative analyses of these observations are presented.

  • PDF

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Solvation in Mixed Solvents (VII). Solvolysis of t-Butyl Halide in Isodielectric Solvents (혼합용매에서의 용매화 (제 7 보). 등유전상수 용매에서 t-Butyl Halide 의 가용매분해반응)

  • Lee, Ick-Choon;Lee, Hai-Whang;Uhm, Tae-Seop;Sung, Dae-Dong;Ryu, Zoon-Ha
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.85-93
    • /
    • 1988
  • Solvolyses of t-butylhalides (X = Cl, Br, I) in quasi isodielectric solvent system, MeOH-nitromethane, MeOH-nitrobenzene and MeOH-ethyleneglycol have been studied kinetically. Methanolyses for t-butylhalides in MeOH-NM and MeOH-NB show rate maxima at 40~100 % (v/v) MeOH. The rate maxima observed have been interpreted as a result of cooperative enhancement of polarity-polarizability and hydrogen bonddonor ability of solvents. The influences of polarity-polarizability and hydrogen bonddonor ability on reactivities of substrates have been discussed in terms of Y value changes. The solvolysis rates for t-butylhalides in E.G. are more than 20 fold faster than those in MeOH and this was attributed to the solvent structure of E.G.

  • PDF