• Title/Summary/Keyword: Solvation effects

Search Result 36, Processing Time 0.032 seconds

Study of Retention in Micellar Liquid Chromatography on a C18 Column on the Basis of Linear Solvation Energy Relationships

  • Tian, Minglei;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.979-984
    • /
    • 2008
  • In this study, 8 solutes (aniline, caffeine, p-cresol, ethyl benzene, methylparaben, phenol, pyridine, and toluene) have been tested in terms of linear solvation energy relationships (LSER). Several micellar liquid chromatography (MLC) systems using cationic surfactant cetyltrimethylammonium bromide (CTAB) and a mixture of water with (methanol, n-propanol, and n-butanol) modifiers were characterized using the LSER solvation parameter model. The effects of the surfactant and modifier concentration on the retention in MLC were discussed. LSER model had demonstrated high potential to predict retention factors with high squared correlation coefficients ($r^2$ > 0.99). A comparison of predicted and experimental retention factors suggests that LSER formalism is able to reproduce adequately the experimental retention factors of the solutes studied in the different experimental conditions investigated. This model is a helpful tool to understand the solute-surfactant interactions and evaluate the retention characteristic of micellar liquid chromatography.

Conformational Preferences of Glycerol in the Gas Phase and in Water

  • Jeong, Keun-Hong;Byun, Byung-Jin;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.917-924
    • /
    • 2012
  • The conformational study of glycerol has been carried out using the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water in order to understand its conformational preferences and solvation effects. Most of the preferred conformers of glycerol have two $C_5$ hydrogen bonds in the gas phase, as found by the analysis of calorimetric data. It has been known that the solvation drove the hydrogen bonds of glycerol to be weaker and its potential surface to be fatter and that glycerol exists as an ensemble of many feasible local minima in water. The calculated populations of glycerol in the gas phase and in water are consistent with the observed values, which are better than the previously calculated ones at the G2(MP2), CBS-QB3, and SM5.42 HF/6-31G(d) levels of theory.

The Effects of Solvation and Polarizability on the Reaction of S-p-Nitrophenyl Thiobenzoate with Various Anionic Nucleophiles

  • Um, Ik-Hwan;Kim, Ga-Ryung;Kwon, Dong-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.585-589
    • /
    • 1994
  • Second-order rate constants have been measured spectrophotometrically for the nucleophilic substitution reactions of S-p-nitrophenyl thiobenzoate with various anionic nucleophiles including 6 ${\alpha}$-effect nucleophiles. A good Bronsted correlation has been observed for the reactions with 7 aryloxides. However, p-chlorothiophenoxide and hydroxide ions exhibit significantly positive and negative deviations, respectively, from the Bronsted plot. The deviations are attributed to the effect of polarizability and solvation rather than a change in the reaction mechanism. The ${\alpha}$-effect nuceophiles except highly basic ones demonstrate remarkably enhanced nucleophilicity. The effects of solvation and/or polarizability are proposed to be important for the cause of the ${\alpha}$-effect.

Interpretation of Dispersion Phenomena in Grunwald-Winstein Correlation for Solvolyses of Naphthoyl Chloride

  • Ryu, Zoon-Ha;Ju, Chang-Suk;Sung, Dae-Dong;Sung, Nak-Chang;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.123-131
    • /
    • 2002
  • Solvolyses rate constant of 1- and 2- naphthoyl chlorides (1 and 2) are reported for aqueous binary mixtures with methanol, ethanol, fluorinated alcohol, acetonitrile and dioxane. Kinetic solvent isotope effects (KISE) in methanol and product selectivities (S) of 2-naphthoyl chloride (2) in alcohol-water are also reported. Dispersions in Grunwald-Winstein correlations $(r{\leq}0.901)$ are discussed by multiple regression analysis incorporating ionizing power $(Y_{Cl})$ scale and rate-rate profiles. Major causes for these phenomena are investigated as an aromatic ring solvation effects, in conjunction with weakly nucleophilic solvation effects ($S_N2$ character), for solvolyses of 1 and for solvolyses of 2, as dual reaction channels, described as $S_N1$-$S_N2$ and $S_AN$-$S_N2$ processes. Distinct border lines between the two pathways are derived from solvolyses rates of 2 in 18 solvent using the results of $log(k/k_o)=mY_{Cl}+lN_T+hI$ plot with values of 1.13 for m, 0.37 for l and 0.15 for h value in 5 aqueous fluorinated alcohol mixtures. Using rate-product correlation, the validity of a third order model based on a general base catalyzed by solvent and contribution from these rate constants, $k_{aa},\;k_{aw}$ and $k_{aw}$, are investigated for $S_AN$-$S_N2$ solvolyses of 2 favored in more rich alcohol media and gradual addition of water to alcohol solvent shows a great shift away from stoichiometric solvation to predominantly medium effects. Rate-rate correlation between solvolyses of 2 and trimethyl acetylchloride (5) with alkyl group in the 29 aqueous solvent mixtures shows appreciable linearity (slope = 0.84, r = 0.987), caused by the same pathway ($S_N1$-$S_N2$ process), even if this correlation coincides with appreciable dispersion (different solvation effect).

Stoichiometric Solvation Effects. Solvolysis of Isopropylsulfonyl Chloride

  • Koo, In-Sun;Yang, Ki-Yull;Shin, Hyeon-Bae;An, Sun-Kyoung;Lee, Jong-Pal;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.699-703
    • /
    • 2004
  • Solvolyses of isopropylsulfonyl chloride (IPSC) in water, D_2O,\;CH_3OD$, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25, 35 and 45$^{\circ}C$. The Grunwald-Winstein plot of first-order rate constants for the solvolytic reaction of IPSC with $Y_{Cl}$ (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small slope (m < 0.30). The extended Grunwald-Winstein plots for the solvolysis of IPSC show better correlation. The kinetic solvent isotope effects determined in water and methanol are in consistent with the proposed mechanism of the general base catalyzed and/or $S_AN/S_N2$ reaction mechanism for IPSC solvolyses based on mass law and stoichiometric solvation effect studies.

Stoichiometric Solvation Effects. Solvolysis of Trifluoromethanesulfonyl Chloride

  • Koo, In-Sun;Yang, Ki-Yull;Park, Jong-Kuen;Woo, Mi-Young;Cho, Jun-Mi;Lee, Jong-Pal;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1241-1245
    • /
    • 2005
  • Solvolyses of trifluoromethanesulfonyl chloride (TFMSC) in water and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25, 35 and 45 ${^{\circ}C}$. The Grunwald-Winstein plot of first-order rate constants for the solvolytic reaction of TFMSC with YCl (based on 2-adamantyl chloride) shows marked dispersions into three separate curves for three aqueous mixtures. The extended Grunwald-Winstein plots for the solvolysis of TFMSC show better correlation. The large negative ${\Delta}S^{\neq}$ and relatively small positive ${\Delta}H^{\neq}$ reveals that the solvolytic reaction proceeds via a typical bimolecular reaction mechanism. The l and m values determined in various solvents are consistent with the proposed mechanism of the general base catalysis $S_AN/S_N2$reaction mechanism for TFMSC solvolyses based on mass law and stoichiometric solvation effect studies.

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems

  • Oh, Yung-Hee;Jang, Gyeong-Gu;Lim, Gyi-Taek;Ryu, Zoon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1089-1096
    • /
    • 2002
  • Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Mutation Effects on FAS1 Domain 4 Related to Protein Aggregation by Molecular Dynamics Simulations and Solvation Free Energy Analysis

  • Cho, Sunhee;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.70-75
    • /
    • 2015
  • Fasciclin 1 (FAS1) is an extracellular protein whose aggregation in cornea leads to visual impairment. While a number of FAS1 mutants have been studied that exhibit enhanced/decreased aggregation propensity, no structural information has been provided so far that is associated with distinct aggregation potential. In this study, we have investigated the structural and thermodynamic characteristics of the wild-type FAS1 and its two mutants, R555Q and R555W, by using molecular dynamics simulations and three-dimensional reference interaction site model (3D-RISM) theory. We find that the hydrophobic solvent accessible surface area increases due to hydrophobic core repacking in the C-terminus caused by the mutation. We also find that the solvation free energy of the mutants increases due to the enhanced non-native H-bonding. These structural and thermodynamic changes upon mutation contribute to understand the aggregation of these mutants.

  • PDF

Stoichiometric Solvation Effects. Product-Rate Correlation for Solvolyses of Phenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기율;강금덕;오혁근;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.520-524
    • /
    • 1996
  • Solvolyses of phenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for phenyl chloroformate with YCl (based on 2-adamantyl chloride) show marked dispersions into three separate lines for the three aqueous mixtures with a small m value (m< 0.2) and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or carbonyl addition for phenyl chloroformate solvolyses based on mass law and stoichiometric solvation effect studies.

Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate

  • Ryu, Zoon-Ha;Lee, Young-Ho;Oh, Yung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1761-1766
    • /
    • 2005
  • Solvolysis rates of isopropenyl chloroformate (3) in water, $D_2O$, $CH_3OD$ and in aqueous methanol, ethanol, 2,2,2-trifluoroethanol (TFE), acetone, 1,4-dioxane as well as TFE-ethanol at 10 ${^{\circ}C}$ are reported. Additional kinetic data for pure water, pure ethanol and 80%(w/w) 2,2,2-trifuoroethanol (T)-water (W) at various temperatures are also reported. These rates show the phenomena of maximum rates in specific solvents (30% (v/v) methanol-water and 20% (v/v) ethanol-water) and, variations in relative rates are small in aqueous alcohols. The kinetic data are analyzed in terms of GW correlations, steric effect, kinetic solvent isotope effects (KSIE), and a third order model based on general base catalysis (GBC). Solvolyses based on predominately stoichiometric solvation effect relative to medium solvation are proceeding in 3 and the results are remarkably similar to those for p-nitrobenzoyl chloride (4) in mechanism and reactivity.