• Title/Summary/Keyword: Solution behavior

Search Result 2,911, Processing Time 0.027 seconds

The Influence of Fashion Consumers' Perceived Risk and Regret-Solution Effort upon the Post-Purchase Intention -Focus on the Different Impulse Buying Types-

  • Suh, Hyun-Suk;Na, Youn-Kue;Kim, Mi-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.6
    • /
    • pp.889-901
    • /
    • 2010
  • This study examines the relationship between perceived risk and regret, the influence of regret, and the regret-solution effort upon post-purchase behavior. These causal pathways are controlled by moderated different impulse buying types. The results of the study are three-fold. First, consumers with high social and convenience risks resulted in the high levels of regret. Second, the higher the regret then the higher the negative purchase intention and the lower the positive purchase intention. Consumers who emphasize the regret-solution have high positive purchase intentions and the low negative purchase intentions. Lastly, as for the influence of the regret upon the negative purchase intention, the 'recollection impulse buying type' has the greatest influence among all other types. No impulse buying types have a positive influence on purchase intention. As for the influence of the regret-solution efforts on the positive purchase intention, the 'pure impulse buying type' had the greatest influence. Only the 'suggestion impulse buying type' influenced the negative purchase behavior intention. The post-purchase intention depends on the level and the degree of the regret-solution efforts of the consumer. This study contributes to the examination of the different impulse buying types that influence the moderators in the causal pathway of the risk perception to the post-purchase buying behavior.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF FORCED NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Liu, Yuji;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.37-51
    • /
    • 2004
  • In this paper, we consider the asymptotic behavior of solutions of the forced nonlinear neutral difference equation $\Delta[x(n)-\sumpi(n)x(n-k_i)]+\sumqj(n)f(x(n-\iota_j))=r(n)$ with sign changing coefficients. Some sufficient conditions for every solution of (*) to tend to zero are established. The results extend and improve some known theorems in literature.

Rheological Properties of Freeze Dried $\alpha$-Rice Powder (동결건조 $\alpha$-미분의 물성에 관하여)

  • 김관유
    • The Korean Journal of Food And Nutrition
    • /
    • v.4 no.2
    • /
    • pp.199-206
    • /
    • 1991
  • Rheological properties of $\alpha$-rice powder were investigated in comparison with those of polished rice powder. Flow behavior for cooked solutions of two powdered samples(5~11%) were Binghampseudo plastic. Consistency index and yield stress of cooked solution of powdered a-rice were much lower than those of polished rice powder while flow behavior index was nearly similar. 9% cooked solution of powdered $\alpha$ -rice showed slightly weaker thixotrophic behavior and more ease tendency to relax under the steady shear than those of polished rice powder.

  • PDF

Examination of Spread-Recoil Behavior of a Shear-thinning Liquid Drop on a Dry Wall (전단희석 액적의 건조 벽면 충돌 후 전개-수축 거동의 관찰)

  • An, Sang-Mo;Lee, Sang-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.131-138
    • /
    • 2009
  • In the present study, spread-recoil behavior of a drop of shear-thinning liquid (xanthan solution) on a dry wall (polished stainless-steel plate) was examined and compared with that of Newtonian liquid (glycerin solution). Nine different kinds of xanthan and glycerin solutions were tested, including three pairs of xanthan and glycerin solutions, each having the same viscosity in low shear rate region ($10^{-2}-10^0\;l/s$). The drop behavior was visualized and recorded using a CCD camera. The maximum diameter and the spreading velocity of the xanthan drops turned out to be significantly larger and the time to reach their final shape was much shorter compared to the cases with the glycerin solutions, due to the smaller viscous dissipation resulted from lower viscosity in the higher shear rate region (>$10^0\;l/s$). As a result, the maximum diameters were measured to be larger than the predicted values based on the model proposed for Newtonian liquids, and the deviation was more pronounced with the solution with the larger viscosity variation. Consequently, viscosity variation with the shear rate was found to be a dominant factor governing the spread-recoil behavior of shear-thinning drops.

  • PDF

The Effect of Molecular Weight on the Gelation Behavior of Regenerated Silk Solutions

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.183-186
    • /
    • 2011
  • The various molecular weight (MW) regenerated silk fibroins were prepared with different dissolution condition and the effect of MW on the gelation behavior of regenerated aqueous silk fibroin (SF) solution was investigated. The result of gelation time measurement indicated that the gelation of SF aqueous solution was accelerated by the increase of MW and SF concentration. When formic acid was added in SF aqueous solution, the gelation time of SFL and SFC30 aqueous solution showed a significant decreaseat 0.03% formic acid addition. In case of the lowest MW sample, SFC180, SF molecules became aggregated and precipitated without gelation after 28 days storage time. These findings indicate that MW control of SF can be utilized to control the gelation time of SF aqueous solution.

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

DYNAMICAL BEHAVIOR OF A HARVEST SINGLE SPECIES MODEL ON GROWING HABITAT

  • Ling, Zhi;Zhang, Lai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1357-1368
    • /
    • 2014
  • This paper is concerned with a reaction-diffusion single species model with harvesting on n-dimensional isotropically growing domain. The model on growing domain is derived and the corresponding comparison principle is proved. The asymptotic behavior of the solution to the problem is obtained by using the method of upper and lower solutions. The results show that the growth of domain takes a positive effect on the asymptotic stability of positive steady state solution while it takes a negative effect on the asymptotic stability of the trivial solution, but the effect of the harvesting rate is opposite. The analytical findings are validated with the numerical simulations.

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.