• Title/Summary/Keyword: Solution aerosol

Search Result 67, Processing Time 0.027 seconds

Mass Transfer of Aerosol onto Spherical Collector at Low Knudsen Number (저 누드센 영역에서 구형 포집체상의 에어로졸 물질 전달)

  • Jung, Chang-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.547-555
    • /
    • 2005
  • In this study, an analytical expression for aerosol mass transfer at spherical collector in the low Knudsen number region was obtained. Happel's zero shear stress cell model was extended in the low Knudsen number region and the result was compared with numerical solution results. The zero vorticity model based on the Kuwabara's cell model was also extended in the low Knudsen number region and compared with Happel's results. The results showed that both analytic and numerical solution agree very well with each other in low Knudsen number region. Happel's zero shear stress model also agrees with Kuwabara's zero vorticity model without significant loss of accuracy. The obtained solution converges to the original solution of Lee et al. (1999) when Knudsen number approaches to zero. Subsequently, this study derived most general type of analytic solution for aerosol mass transfer of spherical collector including the finite Knudsen number region.

Particle Size of Aerosol from 0.25% Cadmium Chloride Nebulizing Solution for Inhalation Toxicology Study (흡입독성 연구에 이용될 0.25% 염화카드뮴 네뷸라이징 용액 에어로졸의 입경)

  • Jeung Jae Yeal;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1257-1263
    • /
    • 2003
  • The modified engineering methodology and the modified electronic circuit in classical ultrasonic principles were applied to ultrasonic aerosol nebulizer for inhalation toxicology study of cadmium aerosol. 1532.96ppm Cd nebulizing solution was used to generate cadmium aerosol for particle size analysis with the modifying source and inlet temperatures. The results of particle size analysis for cadmium aerosol were as following. The highest particle counting for source temperature 20℃ was 399.75 × 10² in inlet temperature 100℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 50℃ was 399.70 × 10² in inlet temperature 50℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 70℃ was 411.14 × 10² in inlet temperature 100℃ and particle diameter 0.75㎛. The ranges of geometric mean diameter were 0.74-0.79㎛ in source temperature 20℃, 0.65-0.72㎛ in source temperature 50℃, and 0.65-0.80㎛ in source temperature 70℃. The smallest geometric mean diameter was 0.65㎛ in source temperature 50, 70℃ and inlet temperature 20, 50℃, and the largest geometric mean diameter was 0.80㎛ in source temperature 70℃ and inlet temperature 100℃. The ranges of geometric standard deviation were 1.71-1.80 in source temperature 20℃, 1.27-1.61 in source temperature 50℃, and 1.27-2.29 in source temperature 70℃. The lowest geometric standard deviation was 1.27 in source temperature 50, 70℃ and inlet temperature 20, 50℃, and the highest geometric standard deviation was 2.29 in source temperature 70℃ and inlet temperature 100℃. Generated aerosol for cadmium inhalation toxicology study was polydisperse aerosol with the above geometric standard deviation 1.2. The ranges of mass median diameter(MMD) were 1.75-2.25㎛ in source temperature 20℃, 1.27-1.61㎛ in source temperature 50℃, and 1.27-2.29㎛ in source temperature 70℃. The smallest MMD was 1.27㎛ in source temperature 50, 70℃ and inlet temperature 20, 50℃, and the largest MMD was 2.29㎛ in source temperature 70℃ and inlet temperature 100℃. Cadmium chloride concentration in nebulizing solution affected the particle size and distribution of cadium aerosol in air. MMO for inhalation toxicology testing in OECD and EU is less than 3㎛ and EPA guidance is less than 4㎛. In our results, in source temperatures of 20, 50, 70℃, and inlet temperatures of 20, 50, 100, 150, 200, 250℃ were conformed to the those guidance.

Studies on fungicidal effectiveness of aerosol for pathogenic aspergilli (잠실내에 있어서 병원성 Aspergilli에 대한 Aerosol의 살균효과)

  • 김충흠;사기언;한계용
    • Korean Journal of Microbiology
    • /
    • v.8 no.4
    • /
    • pp.173-177
    • /
    • 1970
  • In this study the effect of aerosol for the control of the parasitic Aspergilli in the sericultural room was investigated. The results obtained are summarized as follows : 1) The aerosol of PPS-A and PPS-B were quite effective for the control of parasitic Aspergilli in the room of sericulture, while the solution of formalin and chlor kalk, on the other hand, were inconclusive. 2) The activities of the aerosol of PPS-A and PPS-B are more effective when it is applied on the upper part of the room than the lower.

  • PDF

DEVELOPMENT AND VALIDATION OF THE AEROSOL TRANSPORT MODULE GAMMA-FP FOR EVALUATING RADIOACTIVE FISSION PRODUCT SOURCE TERMS IN A VHTR

  • Yoon, Churl;Lim, Hong Sik
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.825-836
    • /
    • 2014
  • Predicting radioactive fission product (FP) behaviors in the reactor coolant system and the containment of a nuclear power plant (NPP) is one of the major concerns in the field of reactor safety, since the amount of radioactive FP released into the environment during the postulated accident sequences is one of the major regulatory issues. Radioactive FPs circulating in the primary coolant loop and released into the containment are basically in the form of gas or aerosol. In this study, a multi-component and multi-sectional analysis module for aerosol fission products has been developed based on the MAEROS model [1,2], and the aerosol transport model has been developed and verified against an analytic solution. The deposition of aerosol FPs to the surrounding structural surfaces is modeled with recent research achievements. The developed aerosol analysis model has been successfully validated against the STORM SR-11 experimental data [3], which is International Standard Problem No. 40. Future studies include the development of the resuspension, growth, and chemical reaction models of aerosol fission products.

Attachment Behavior of Fission Products to Solution Aerosol

  • Takamiya, Koichi;Tanaka, Toru;Nitta, Shinnosuke;Itosu, Satoshi;Sekimoto, Shun;Oki, Yuichi;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.350-353
    • /
    • 2016
  • Background: Various characteristics such as size distribution, chemical component and radio-activity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of $^{248}Cm$. Materials and Methods: Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. Results and Discussion: A significant difference according as a solute of solution aerosols was found in the attachment behavior. Conclusion: The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

Analysis of Gravitational Coagulation of Aerosol Particles (중력 침강에 의한 입자 응집의 해석적 연구)

  • Jin, Hyeong-A;Jeong, Chang-Hun;Lee, Gyu-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.303-312
    • /
    • 1998
  • To obtain the solution to the time-dependent particle size distribution of an aerosol undergoing gravitational coagulation, the moment method was used which converts the non linear integro-differential equation to a set of ordinary differential equations. A semi-numerical solution was obtained using this method. Subsequently, an analytic solution was given by approximating the collision kernel into a form suitable for the analysis. The results show that during gravitational coagulation, the geometric standard deviation increases and the geometric mean radius decreases as time increases.

  • PDF

Synthesis of Polymer-Carbon Nanotubes Composite Nanoparticles and Their Applications into Forming Hybrid Composite Thin Films (폴리머-탄소나노튜브 복합체 에어로졸 입자의 생성 및 이를 이용한 하이브리드 복합체 박막 제조)

  • Kim, Whi-Dong;Ahn, Ji-Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.61-67
    • /
    • 2010
  • In this paper, we describe a new method to form polymer thin films, in which carbon nanotubes (CNTs) are homogeneously distributed so that they can strengthen the mechanical property of resulting polymer film. To do so, we first homogeneously mixed CNTs with polymer in a DMF solvent. With the assistance of ultrasonic nebulizer, the polymer/CNT solution was then aerosolized into micro-sized droplets and finally turned into solidified polymer/CNT composite particles by gas-phase drying process. As the results of SEM and TEM analysis, CNTs were found to be homogeneously immobilized in the polymer matrix particles due to rapid drying process in the gas phase. For comparison purpose, (i) the polymer/CNTs composite particles prepared by aerosol processing method and (ii) polymer/CNTs sheets prepared by simple solution-evaporation method were employed to form polymer/CNTs composite thin films using a hot press. As the result, the aerosol processing of composite particles was found to be a much more effective method to form homogeneously distributed-CNTs in the polymer matrix thin film.

Recent Development of Analytical Solutions to Brownian Aerosol Coagulation in Different Particle Size Regimes

  • Park, Seong-Hun;Kim, Hyun-Tae;Lee, Kyoo-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.65-71
    • /
    • 1999
  • The log-normal size distribution theories developed recently for aerosol coagulation are reviewed. The analytical solutiosn to Brownian coagulation developed recently for various particle size regimes are reviewed. In order to describe the evolution of the size distribution of a coagulating aerosol over the entire size range, the analytical solutions developed individually for the free-molecule regime, the transition regime, the nearcontinuum regime, and the continuum regime have been combined. The work described here represents the first analytical solution to the aerosol coagulation problem covering the entire particle size range.

  • PDF

Synthesis of aerosol nanoparticles by spark discharge and applications

  • Park, Jaehong;Byeon, Jeong Hoon;Yoon, Ki Young;Park, Jae Hong;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.111-122
    • /
    • 2009
  • This paper reviews about synthesis of nanoparticles by spark discharge and applications. A method of catalytic activation with Pd and Pt aerosol nanoparticles produced by spark discharge was introduced. After annealing, the catalytically activated substrate placed into a solution for electroless silver deposition. The silver was then formed only on the activated regions of the substrate. Silver line patterns having a width of $18{\mu}m$ and a height of $1{\mu}m$ were created with the ability to be effectively reproduced. Antimicrobial nanoparticles such as silver were used for removal of bioaerosols. Silver nanoparticles deposited air filters such as ACF filters were evaluated by antimicrobial test.

  • PDF

Fabrication of Borophosphosilicate Glass Thin Films for Optical Waveguides Using Aerosol Flame Deposition Method (Aerosol Flame Deposition법을 이용한 광도파로용 Borophosphosilicate 유리박막의 제작에 관한 연구)

  • 이정우;정형곤;김병훈;장현명;문종하
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Silica glass films to utilize optical waveguides was fabricated by Aerosol Flame Deposition(AFD) method. As the amount of B2O3 increased in the sol solution of (92-x)SiO2-xB2O3-8P2O5, the thermophoretic deposition rate onto Si substrate was markedly lowered due to vaporizing out of B2O3 and P2O5 during the vaporization and reaction of the aerosol in the flame. GeO2 was added to 62SiO2-30B2O3-8P2O5 in order to control easily the refractive index of glass films. As the amount of GeO2 increased from 2 to 12 wt%, its refractive index increased from 1.4633 up to 1.4716.

  • PDF