• Title/Summary/Keyword: Solute structure

Search Result 67, Processing Time 0.02 seconds

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae;Cho, Young-Hee;Jung, Jae-Gil;Yoon, Woon-Ha;Lee, Young-Kook;Lee, Jung-Moo
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1376-1385
    • /
    • 2018
  • Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes

  • Schatzle, Hannah;Brouwer, Eva-Maria;Liebhart, Elisa;Stevanovic, Mara;Schleiff, Enrico
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.645-658
    • /
    • 2021
  • Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.

Spatial Variability of Hydraulic Properties in a Multi-Layered Soils of Japanese Larch (Larix leptolepis) Stand (낙엽송림분의 다층구조 토광에 있어서 수리특성의 공간 변리)

  • Chung Doug Young;Jin Hyun O
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 1999
  • Soil structure and organic matter have been known to strongly affect water flow and solute transport, yet little information is available concerning soil hydraulic properties related to soil physical and chemical properties in the forest site. The purpose of this study was to quantify the spatial variability and spatial correlation of the measured parameter values from the plots established with the rainfall simulator on Japanese larch(Larix leptolepis) dominated site in Kwangju. Kyunggi-Do. Measurement of soil water flux and retention were made with the inherent soil texture, soil structure, and organic matter. The method was based on the observation that when water was applied at a constant rate to the soil surface on each plot. The method was simple to apply and consists of following steps: (i) Wet the soil from a rainfall simulator with several known discharge rates on a relatively leveled soil surface with and without organic matter. (ii) Once the borders of the ponded zone were steady, saturated hydraulic conductivity( $K_{s}$) and the matric flux function(F) was evaluated from a regression of flux vs. the reciprocal of the ponded area. A conductivity of the form $K_{i+}$$_1$ $_{c}$= $K_{i}$( $_{c}$) [1-d /dz] where flux continuity implies. For this, continuity of matric potential at the interface at all times are as follows: $_1$( $Z_{c}$) = $_2$( $Z_{c}$) = $_{c}$ for steady state intake from water ponded on the soil surface. Results of this investigation showed the importance of understanding spatial variability in wide differences of water retention and saturated hydraulic conductivity with respect to pore geometry and organic matter contents which influenced the water flux throughout the soil profile.l profile.ile.

  • PDF

Effect of Addition of Cosolvent γ-Butyrolactone on Morphology of Polysulfone Hollow Fiber Membranes (폴리설폰 중공사막 구조에 대한 조용매 γ-Butyrolactone 첨가 영향)

  • Yun, Sukbok;Lee, Yongtaek
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.274-280
    • /
    • 2014
  • Polysulfone (PSf) hollow fiber membranes were prepared via the nonsolvent induced phase separation technique. The cosolvent of ${\gamma}$-butyrolactone (GBL) was added to the polymer solution containing a mixture of PSf and N,N-dimethylacetamide (DMAc). Water was utilized as a precipitation nonsolvent. The morphology of prepared membranes was investigated using a field emission scanning electron microscopy. The fabricated membrane showed a typical asymmetric structure such as the dense layer on the porous support layer by the addition of GBL to the polymer solution. As the concentration of GBL increased, the asymmetric porous structure was shown to be more intensified. It was thought that the added GBL played a role of enhancing the liquid-liquid phase separation of the polymer solution, since the cosolvent of GBL might change the thermodynamic solubility parameter of the doping solution. Permeation properties through the prepared hollow fiber membranes were characterized by measuring the pure water flux and the solute rejection using $0.05{\mu}m$ polystyrene latex (PSL) beads. Experimental results revealed that the use of PEG as the internal coagulant enhanced the pure water flux up to 130 times compared to the use of EG while the rejection of the PSL beads decreased only 5%.

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination (다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발)

  • Yu, Hye-Weon;Song, Jun-Ho;Kim, Chang-Min;Yang, Euntae;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.

The Effect of Surfactant on Controlled Release of Amino acids Through Poly(2-Hydroxyethyl Methacrylate) Membrane (Poly(2-Hydroxyethyl Methacrylate)막을 통한 아미노산의 방출 조절에 대한 계면활성제의 효과)

  • Kim Ui-Rak;Jeong Bong-Jin;Lee Myung-Jae;Min Kyung-Sub
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.22-35
    • /
    • 1993
  • The transport phenomena of the free amino acids through poly(hydroxyethyl methacrylate)[P(HEMA)] have been investigated with and without various kinds of surfactants solution and in the mixed surfactants solution. Glutamine has the highest diffusivity among 4 amino acids at 1CMC of cetyldimethylethylammonium bromide(CTABr) surfactant. Glutamic acid is not affected by the concentration of CTABr. Methionine and Lysine shows slight decreased diffusivity at 0.5 CMC, but increase its diffusivity at 1CMC and 2CMC due to the structure change of membrane and the viscosity change of surfactant solution. Glutamic acid has the highest diffusivity among four amino acids at sodium dodecyl sulfate(SDS) and Triton X-100 surfactant. In mixed surfactant solution, each amino acids shows high diffusivity through 45% water content membrane at the 0.5 mole fraction of SDS in the SDS/TX-100 surfactant mixtures. It has been found that not only the property of membrane but also the effects of solute-solvent interactions and solvent effect are very important as the permeation of amino acids occurs through P(HEMA) membrane. The diffusivities of free amino acids through membrane depend upon their molecular shape, size and charge.

  • PDF

Studies on the Physical and Chemical Denatures of Cocoon Bave Sericin throughout Silk Filature Processes (제사과정 전후에서의 견사세리신의 물리화학적 성질변화에 관한 연구)

  • 남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.1
    • /
    • pp.21-48
    • /
    • 1974
  • The studies were carried out to disclose the physical and chemical properties of sericin fraction obtained from silk cocoon shells and its characteristics of swelling and solubility. The following results were obtained. 1. The physical and chemical properties of sericin fraction. 1) In contrast to the easy water soluble sericin, the hard soluble sericin contains fewer amino acids include of polar side radical while the hard soluble amino acid sach as alanine and leucine were detected. 2) The easy soluble amino acids were found mainly on the outer part of the fibroin, but the hard soluble amino acids were located in the near parts to the fibroin. 3) The swelling and solubility of the sericin could be hardly assayed by the analysis of the amino acid composition, and could be considered to tee closely related to the compound of the sericin crystal and secondary structure. 4) The X-ray patterns of the cocoon filament were ring shape, but they disappeared by the degumming treatment. 5) The sericin of tussah silkworm (A. pernyi), showed stronger circular patterns in the meridian than the regular silkworm (Bombyx mori). 6) There was no pattern difference between Fraction A and B. 7) X-ray diffraction patterns of the Sericin 1, ll and 111 were similar except interference of 8.85A (side chain spacing). 8) The amino acids above 150 in molecular weight such as Cys. Tyr. Phe. His. and Arg. were not found quantitatively by the 60 minutes-hydrolysis (6N-HCI). 9) The X-ray Pattern of 4.6A had a tendency to disappear with hot-water, ether, and alcohol treatment. 10) The partial hydrolysis of sericin showed a cirucular interference (2A) on the meridian. 11) The sericin pellet after hydrolysis was considered to be peptides composed with specific amino acids. 12) The decomposing temperature of Sericin 111 was higher than that of Sericin I and II. 13) Thermogram of the inner portioned sericin of the cocoon shell had double endothermic peaks at 165$^{\circ}C$, and 245$^{\circ}C$, and its decomposing temperature was higher than that of other portioned sericin. 14) The infrared spectroscopic properties among sericin I, II, III and sericin extracted from each layer portion of the cocoon shell were similar. II. The characteristics of seriein swelling and solubility related with silk processing. 1) Fifteen minutes was required to dehydrate the free moisture of cocoon shells with centrifugal force controlled at 13${\times}$10$^4$ dyne/g at 3,000 R.P.M. B) It took 30 minutes for the sericin to show positive reaction with the Folin-Ciocaltue reagent at room temperature. 3) The measurable wave length of the visible radiation was 500-750m${\mu}$, and the highest absorbance was observed at the wave length of 650m${\mu}$. 4) The colorimetric analysis should be conducted at 650mu for low concentration (10$\mu\textrm{g}$/$m\ell$), and at 500m${\mu}$ for the higher concentration to obtain an exact analysis. 5) The absorbing curves of sericin and egg albumin at different wave lengths were similar, but the absorbance of the former was slightly higher than that of the latter. 6) The quantity of the sericin measured by the colorimetric analysis, turned out to be less than by the Kjeldahl method. 7) Both temperature and duration in the cocoon cooking process has much effect on the swelling and solubility of the cocoon shells, but the temperature was more influential than the duration of the treatment. 8) The factorial relation between the temperature and the duration of treatment of the cocoon cooking to check for siricin swelling and solubility showed that the treatment duration should be gradually increased to reach optimum swelling and solubility of sericin with low temperature(70$^{\circ}C$) . High temperature, however, showed more sharp increase. 9) The more increased temperature in the drying of fresh cocoons, the less the sericin swelling and solubility were obtained. 10) In a specific cooking duration, the heavier the cocoon shell is, the less the swelling and solubility were obtained. 11) It was considered that there are differences in swelling or solubility between the filaments of each cocoon layer. 12) Sericin swelling or solubility in the cocoon filament was decreased by the wax extraction.. 13) The ionic surface active agent accelerated the swelling and solubility of the sericin at the range of pH 6-7. 14) In the same conditions as above, the cation agent was absorbed into the sericin. 15) In case of the increase of Ca ang Mg in the reeling water, its pH value drifted toward the acidity. 16) A buffering action was observed between the sericin and the water hardness constituents in the reeling water. 17) The effect of calcium on the swelling and solubility of the sericin was more moderate than that of magnecium. 18) The solute of the water hardness constituents increased the electric conductivity in the reeling water.

  • PDF