• Title/Summary/Keyword: Solute

Search Result 688, Processing Time 0.02 seconds

HDTMA-Bentonite로부터 페놀류 화합물의 경쟁탈착

  • 신원식;김영규;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.15-18
    • /
    • 2001
  • Sorption/desorption studies were conducted to determine sorption/desorption characteristics of phenolic compounds (phenol and 4-chlorophenol) in organically modified natural bentonite. The cationic exchange capacity (CEC) of bentonite was exchanged with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the removal capacity of organic phenol contaminants dissolved in aqueous solution. This modification produces a change of the surface property of bentonite from hydrophilic to organophilic. The single-solute and bi-solute competitive adsorptions were performed In batch mode to investigate the removal of two toxic organic Phenols, chlorophenol and 4-chlorophenol on the HDTMA-bentonite. The adsorption affinity of the 4-chlorophenol was higher than phenol due to higher octanol:water partition coefficient (Kow). The single-solute and bi-solute competitive desorptions were also performed investigate the competitive desorption of the phenolic compounds from HDTMA-bentonite. Freundlich model was used to analyze the single-solute adsorption/desorption results, while the IAST model predicted the hi-solute adsorption/desorption equilibria. The IAST model well predicted hi-solute competitive adsorption/desorption behaviors.

  • PDF

Solute Transport in Rock Fractures

  • Yeo, In-Wook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.89-92
    • /
    • 2001
  • This study aims at investigating the relationship between dispersion coefficient ratio to molecular diffusion coefficient (D$_{l}$ /D$_{m}$) and Peclet number (Pe) for multi-solute system in non-Darcian flow regime. Existing understanding on solute dispersion is primarily derived from one-solute system in Darcian flow regime. We found that solute dispersion in rock fractures can be characterized by the mechanism of both macrodispersion and Taylor dispersion, even for non-Darcian f]ow domain. For the Darcian flow regime even different solutes lead to the same D$_{l}$ /D$_{m}$ at same Pe. However, as the flow becomes non-Darcian, solute with a higher molecular diffusion coefficient result in higher D$_{l}$ /D$_{m}$ at tile same Pe than that with a lower diffusion coefficient.cient.

  • PDF

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES (BTCs) IN STRUCTURED SOIL COLUMNS

  • Kim, Dong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.25-29
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It would be questionable, however. to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the Horizontally-positioned TDR probes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. This was mainly due to the bypassing of solute through soil macropores.

  • PDF

Calculation of the Entropies and Chemical Potentials of Hard-Sphere Solutes Solvated in Hard-Sphere Solids Using the Radial Free-Space Distribution Function

  • 윤병집
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1209-1212
    • /
    • 1999
  • The entropies and chemical potentials of hard-sphere solutes solvated in hard-sphere solids were calculated by Monte Carlo method using the radial free-space distribution function. This method is based on calculating the entropy by comparing the free volume of a molecule with that of an ideal gas, and is applicable even when the size of solute is very large and the solvent is a solid. When the diameter of hard-sphere solute is small the solute molecule behaves as like as a fluid in solid structures, but when the diameter of solute becomes large, a fluid-to-solid phase transition takes place. The fluid-to-solid phase transition occurs at the region of the smaller size of solute with the more increase of solvent density. The least square fit values of analytical form of the radial free-space distribution functions of solute molecules are presented for future uses.

Transport Characteristics of Alcohol Solutes through Copolymer Hydrogel Membranes Containing Poly(2-Hydroxyethylmethacrylate) (Poly(2-Hydroxyethylmethacrylate)를 포함한 공중합체 수화겔막에 대한 알콜용질의 투과특성)

  • Park, Yu Mi;Kim, Eun Sik;Seong, Yong Gil
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 1990
  • Three kinds of hydrogel membranes were prepared by the copolymerization of 2-hydroxyethylmethacrylate (HEMA) with acrylamide, N, N-dimethylamide and methylmethacrylate in the presence of solvent and crosslinker respectively. The equilibrium water content, relative permeability and partition coefficient of the membranes for alcohol solutes were measured. It has been found that the permeation of organic solute occurs through the water-filled regions in the hydrogel membrane, and that the gpermeability coefficient of organic solute depends on the molecular size. But the permeability of organic solute was controlled by the interaction of solute-membrane at the low water content. By the partition data, it has been shown that the partition of solute is only controlled by hydrophobic interaction between solute and membrane. The diffusion coefficient data were interpreted on the basis of water-solute interaction. It has been found that the diffusion of organic solute is determined by the free volume of water in the membrane, and that hardly depends on polarity-polarizability and hydrogen bonding ability between water and solute.

  • PDF

Effects of Precipitates and Mn Solute Atoms on the Recrystallization Behavior of an Al-Mn Alloy

  • Lee, Yongchul;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.229-235
    • /
    • 2014
  • In this paper, the effects of precipitates and Mn-solute atoms on the recrystallization behavior of an Al-Mn alloy was studied using micro-Vickers hardness, electrical conductivity measurements and optical microscopy. Various thermo-mechanical processes were designed to investigate the different morphologies, and the solute concentration, of Mn in the matrix. The results indicate that the recrystallization temperature, $T_R$ and time, $t_R$, are influenced by the amount of M-solute atoms in the matrix, and that the recrystallization microstructure is influenced by the amount of precipitates. Recrystallization in the Slow-Cooling specimen was rapid due to its low concentration of Mn-solute atoms, and the crystal-grain size was the smallest due to finely distributed precipitates. However, in the case of the No-Holding specimen, elongated grains were observed at the low annealing temperature and the largest recrystallized grains were observed at the high annealing temperatures (compared with Slow-Cooling and Base specimens) due to the high Mn-solute atoms in the matrix.

The Role of Colloidal Interactions on the Solute Partitioning and the Rejection Occurred in Membrane Pores (막기공에서의 용질분배와 배제에 대한 콜로이드 상효작용의 역할)

  • 전명석
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.3-7
    • /
    • 1996
  • A rigorous analysis on the effect of colloidal interactions on the separation characteristic has been extended to the case of non-dilute charged solute concentration. The solute partitioning within slit pores for a wide range of solute concentration has been predicted by performing the Monte Carlo technique. Using a hindered transport model, rejection coefficients have been estimated from the predicted concentration profile.

  • PDF

Synthesis of New Draw Solute Based on Polyethyleneimine for Forward Osmosis (정삼투를 위한 Polyethyleneimine 기반 유도용질 제조)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.286-295
    • /
    • 2018
  • A novel multi-valent salt based on polyethyleneimine having molecular weight of 800 (PEI 800) has been synthesized and characterized as forward osmosis draws solute. A reaction intermediate was synthesized by the neutralization reaction of polyethyleneimine and methyl acrylate, and was hydrolyzed with potassium hydroxide to synthesize a water soluble carboxylic acid (potassium salt) polyethyleneimine. NMR spectrometry, viscometry measurements and osmometry measurements was performed to characterize the draw solute. Forward osmosis experiments were done to know whether the solute could be used as a draw solute or not. The result shows comparable water flux and lower reverse salt flux compared with NaCl as a draw solute. We have also demonstrated recycling of the draw solute in the FO-NF integrated process.

Impact of Secondary Currents on Solute Transport in Open-Channel Flows over Smooth-Rough Bed Strips (조(粗)·세립상(細粒床)의 연속구조를 갖는 개수로 흐름에서 오염물질 수송에 대한 이차흐름 영향 분석)

  • Kang, Hyeongsik;Choi, Sung-Uk;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.73-81
    • /
    • 2009
  • This paper presents a numerical investigation of the impact of the secondary currents on solute transport in open-channel flows. The RANS model with Reynolds stress model is used for flow modeling, and the GGDH(generalized gradient diffusion hypothesis) model is used to close the scalar transport equation. Using the developed model, the impact of secondary currents on solute transport in open channel flows over smooth-rough strip is investigated. Through numerical experiments, the secondary currents are found to affect the solute spreading, leading a movement of the position of the peak concentration and a skewed distribution of solute concentration. Due to the lateral flow of secondary currents near the free surface, the concentration at the rough strip is found to be larger than that at the smooth strip bed. The solute at the rough strip is more rapidly transported than smooth bed. A magnitude analysis of the solute transport rate in scalar transport equation is also carried out to investigate the effect of secondary currents and scalar flux on the concentration distribution.