• Title/Summary/Keyword: Soluble time

Search Result 1,191, Processing Time 0.031 seconds

Application of Microencapsulated Isoflavone into Milk

  • Jeon, Byung-Ju;Kim, Nam-Chul;Han, Eun-Mi;Kwak, Hae-Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.859-865
    • /
    • 2005
  • This study was designed to develop a microencapsulated, water-soluble isoflavone for application into milk and to examine the hypocholesterolemic effect of such a milk product in a rat diet. The coating material was medium-chain triglyceride (MCT) and the core material was watersoluble isoflavone. The microencapsulation efficiency was 70.2% when the ratio (w/w) of coating material to core material was 15:1. The isoflavone release from the microcapsules was 8% after 3-day storage at $4^{\circ}C$. In in vitro study, 4.0-9.3% of water-soluble isoflavone in simulated gastric fluid was released in the pH range of 2 to 5 after 60 min incubation; however, in simulated intestinal fluid at pH 8, 87.6% of isoflavone was released from the capsules after 40 min incubation time. In sensory analysis, the scores of bitterness, astringency, and off-taste in the encapsulated isoflavone-added milk were slightly, but not significantly, different from those in uncapsulated, isoflavone-added milk. In blood analysis, total cholesterol was significantly decreased in the isoflavone-added group compared with that in the control after 6-week feeding. Therefore, this study confirmed the acceptability of MCT as a coating material in the microencapsulation of water-soluble isoflavone for application into milk, although a slight adverse effect was found in terms of sensory attributes. In addition, blood total cholesterol was lowered in rats which had been fed a cholesterol-reduced and microencapsulated, isoflavoneadded milk for 6 weeks.

EO Characteristics of photo-aligned TN-LCD on Soluble Polyimide Surface (가용성 폴리이미드 표면을 이용한 광배향 TN-LCD의 전기광학 특성)

  • Park, Tae-Kyu;Lee, Jeong-Ho;Seo, Dae-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1759-1761
    • /
    • 1999
  • The generation of pretilt in nematic liquid crystal(NLC)and electro-optical(EO) characteristics of photo-aligned twisted nematic (TN)-LCD with oblique p-polarized ultraviolet (UV) light irradiation on the two kinds of the soluble polyimide (PI) surfaces containing trifluoromethyl moieties were investigated. The generated pretilt angle of NLC is about $2.5^{\circ}$ with p-polarized UV light irradiation of $20^{\circ}$ on PI-3 surface at 20 min.; However pretilt angle of about $0.5^{\circ}$ are observed on PI-1 and PI-2 surfaces. The generated pretilt angle of NLC on PI-3 surface may be attributed to the trifluoromethyl moieties attached to the lateral benzene rings. The voltage-transmittance and response time characteristics of photo-aligned TN-LCD with p-polarized UV light irradiation of $20^{\circ}$ on PI-1 surfaceat at 20 min were almost same in comparison with the rubbing-aligned TN-LCD. However, the high threshold voltage and slow response are observed on PI-3 surface. Also, the decay time $\tau_d$ of photo-aligned TN-LCD is attributed to the anchoring energy of NLC.

  • PDF

A Feasibility Study on Biogas Production from Anaerobic Digestion of Straw (볏짚의 혐기성소화시 소화가스 생성에 관한 연구)

  • Park, Jong-An;Hur, Joon-Moo
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.29-35
    • /
    • 1999
  • Quantity and composition of biogas from semi-continuous anaerobic digestion of straw were obtained experimentally in laboratory scale digesters fed with 1 liter of 5% straw-water mixture and maintained at 35$^{\circ}C$. Experiments were carried out for hydraulic retention time(HRT) of 8, 10 and 15days, respectively. The amount and composition of biogas produced were measured until steady-state was achieved for each run. The amount of biogas and methane percent go through a maximum and decrease continuously towards the steady-state after three times operation of hydraulic retention time(HRT). Methane gas production rates at steady-state increase with the increasing of HRT. Biogas production of 0.45 liter/day with 25% methane, 0.42 liter/day with 33.7% methane and 0.492 liter/day with 31.7% methane were obtained for 8, 10 and 15days of HRT, respectively. The high proportion of soluble carbohydrates present in straw makes the volatile fatty acids to build up within the digester causing a drop in pH that inhibits digestion. Regular control of pH is therefore necessary by adding alkalinity. Reductions in COD increase with increase in HRT. The stratification of plant material within the digester is different from that of manure, and modifications in design and operation of digesters may be necessary if they are fed with plant matter.

  • PDF

A Study on the Water-soluble Fiber at the Room Temperature using Carboxymethylcellulose(CMC) Synthesis (Carboxymethylcellulose 제조공정을 이용한 상온에서의 수용성 섬유에 관한 연구)

  • Song, Ho-Jun;Choi, Youngmin;Park, Jin-Won
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.105-116
    • /
    • 2005
  • Carboxymethylcellulose(CMC) which is water soluble at room temperature was manufactured from the cellulose material in this study. Experimental parameters were reaction temperature, time and concentration of NaOH and monochloroacetic acid. CMC was tested for solubility, degree of substitution(D.S.) and tensile strength. The surface structure of CMC fiber was tested using scanning electron microscope(SEM). CMC manufactured from viscose rayon was affected by the chemical concentration rather then the reaction time and temperature. Also, degree of substitution is closely related to the solubility of the CMC.

  • PDF

A Study on Factors Affecting Anaerobic Digestion of Waste Activated Sludge (活性슬러지의 嫌氣性消化에 미치는 影響因子에 관한연구)

  • 최홍복;황경엽;김윤신
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • This study was carried out to investigate factors affecting anaerobic digestion enhancement of waste activated sludge(WAS). In order to this investigation, the degradability and rupture of microorganisms cell present in WAS, and mesophilic anaerobic digestion(MAD) of these compounds, were also evaluated. The micro-organisms cell in WAS were ruptured by a mechanical jet stream and smashed under pressure of 30 bar. The rupture level of micro-organisms cell in WAS were determined using phosphate, soluble protein and soluble chemical oxygen demand (SCOD)concentrations. It was found that the rupture level of micro- organisms cell within WAS increased with increasing pretreatment times, and the pretreated WAS once under pressure of 30 bar resulted in an increase in VS removal and methane production of 5%, 9% over the intact WAS of 35%, 71%, respectively, in batchwise MAD of 6-day and 14-day retention time. With the pretreatment and MAD of 6-day retention time used, mesophlic bioconvertibility as the biogasification of WAS were found to be significantly higher biogas of 1, 850 ml than 300 ml under intact WAS. In conclusion it can be stated mechanical pretreatment enhances WAS bioconvertibility, while under identical treatment conditions, resulted in a considerable decrease in the bioconvertibility of intact WAS.

  • PDF

Application of a Fed-Batch Bioprocess for the Heterologous Production of hSCOMT in Escherichia coli

  • Passarinha, L.A.;Bonifacio, M.J.;Queiroz, J.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.972-981
    • /
    • 2009
  • In this paper, a fed-batch cultivation process in recombinant Escherichia coli BL21(DE3) bacteria, for the production of human soluble catechol-O-methyltransferase (hSCOMT), is presented. For the first time, a straightforward model is applied in a recombinant hSCOMT expression system and distinguishes an initial cell growth phase from a protein production phase upon induction. Specifically, the kinetic model predicts biomass, substrate, and product concentrations in the culture over time and was identified from a series of fed-batch experiments designed by testing several feed profiles. The main advantage of this model is that its parameters can be identified more reliably from distinct fed-batch strategies, such as glycerol pulses and exponential followed by constant substrate additions. Interestingly, with the limited amount of data available, the proposed model accomplishes satisfactorily the experimental results obtained for the three state variables, and no exhaustive process knowledge is required. The comparison of the measurement data obtained in a validation experiment with the model predictions showed the great extrapolation capability of the model presented, which could provide new complementary information for the COMT production system.

Real-time Simulation Technique for Visual-Haptic Interaction between SPH-based Fluid Media and Soluble Solids (SPH 기반의 유체 및 용해성 강체에 대한 시각-촉각 융합 상호작용 시뮬레이션)

  • Kim, Seokyeol;Park, Jinah
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Interaction between fluid and a rigid object is frequently observed in everyday life. However, it is difficult to simulate their interaction as the medium and the object have different representations. One of the challenging issues arises especially in handling deformation of the object visually as well as rendering haptic feedback. In this paper, we propose a real-time simulation technique for multimodal interaction between particle-based fluids and soluble solids. We have developed the dissolution behavior model of solids, which is discretized based on the idea of smoothed particle hydrodynamics, and the changes in physical properties accompanying dissolution is immediately reflected to the object. The user is allowed to intervene in the simulation environment anytime by manipulating the solid object, where both visual and haptic feedback are delivered to the user on the fly. For immersive visualization, we also adopt the screen space fluid rendering technique which can balance realism and performance.

Changes in Free Amino Acids and Sugars in Water-soluble Extracts of Fresh Ginseng during Browning Reaction (수삼물추출물의 갈변반응중 아미노산과 당류변화)

  • 김만욱;박래정
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.122-131
    • /
    • 1981
  • An aqueous extract s of fresh ginseng roots was heated at loot for 64 hrs. and the changes of color intensity, pH and the amount of free sugars and amino acids during the various intervals of the heating time were investigated. Color intensity and absorbance of the solution at 490nm were increased in proportion to the length of the heating time. Most of brown pigments produced during the treatment were water soluble, and pH 5.1 at initial stage of the solution, was slightly decreased at the final stages of the reaction. Sucrose, glucose and fructose were major free sugars in ginseng roots, and the amounts of sucrose was over 90 % of total free sugars. Sucrose. was largely decreased approximately 50%, by 64 hrs of the treatment, whereas sharp increase in the amount of glucose and fructose was observed during the reaction in the solution. The observed increase in reducing sugars, glucose and fructose was presumed due to hydrolysis of sucrose. Evidently, glucose and fructose were not important factor to control the browning reaction of the solution. Most of free amino acids and peptides except alanine and isoleucine especially arginine, serine and threonine, were sharply decreased up to 40 : 50% of the original concentration within 2 hrs. Accordingly, the content of free amino acids and peptides seems to be extremely important factor to control the browning reaction in ginseng. A free amino acid, presumed to be nor-leucine, was found in fresh ginseng root on the basis of re mention on liquid chromatography. Kinetic analysis of the browning reaction indicated a pseudo second order with respect to amino acid concentration at the initial stage.

  • PDF

Study on the Mechanical Extraction Properties of Tobacco Stem Biomass (담배 주맥 바이오매스의 압착추출특성 연구)

  • Sung, Yong-Joo;Han, Young-Lim;Rhee, Moon-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • This work evaluated the extractability of tobacco stem biomass for the papermaking type Reconstituted Tobacco Sheet(RTS). The effects of the soaking conditions on the hydration of stem biomass and the effects of the hydrated state on the mechanical extraction were investigated. In order to simulate the mechanical expression process of a papermaking type RTS mill, for example, the screw press process, the novel mechanical pressing analyzer was developed for this study. The hydration of stem biomass by soaking process was greatly affected by the soaking time and the soaking temperature. The longer soaking time and the higher soaking temperature resulted in the higher hydrated stem biomass. Since the higher hydrated stem had more combined water in the inner structure and resulted in the more flexible structure, the higher hydrated stem leaded to the more compressed filter cake and the higher water contents in the filter cake after the mechanical pressing. The pilot pulping experiments showed the difference in hydration and extractability between burley and bright tobacco stem. The bulkier structure of the burley stem resulted in the faster hydration by pilot pulping and leaded to the larger reduction in water soluble components. And the hydration process showed the major influence on the separation efficiency of water soluble components.

Mass Transport of Soluble Species Through Backfill into Surrounding Rock (용해도가 큰 핵종의 충전물질에서 주변 암반으로의 이동 현상)

  • Kang, Chul-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, voids, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the“gap”, e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span.

  • PDF