• Title/Summary/Keyword: Soluble time

Search Result 1,191, Processing Time 0.036 seconds

An Evaluation of Condensed Molasses Solubles (CMS) as a Source of Nitrogen for Ruminal Microbes In Vitro (반추위 미생물의 질소공급원으로서 Condensed Molasses Solubles (CMS)의 사료 가치 평가)

  • Yeo, J.M.;Kim, C.H.;Lee, J.H.;Nho, W.G.;Lee, S.H.;Kim, W.Y.
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.513-520
    • /
    • 2006
  • A series of four in vitro experiments were conducted to evaluate condensed molasses solubles (CMS) as a source of nitrogen for ruminal microbes. In experiment 1, as compared with urea, the value of CMS as a nitrogen source was examined. In experiment 2, to determine the time needed for maximal response of microbial synthesis, the treatments were incubated for increasing times (from 6 h to 16 h). Because a sediment that was assumed to cause nitrogen loss was found after incubation in experiments 1 and 2, it was decided to avoid formation of sediment using sugar instead of molasses or a shorter time incubation (experiments 3 and 4). Furthermore, in experiment 4, because the extent to which ammonia nitrogen is released from CMS and urea before 6 h of incubation was uncertain, it was decided to examine the peaks of concentrations of ammonia nitrogen released from CMS and urea by sampling after 2 h incubation. There was no significant difference in the concentration of microbial-N between molasses/CMS and molasses/ urea treatments in experiment 1, although there were greater decreases in ammonia concentration with the molasses/CMS treatment. The microbial protein synthesis was increased progressively until 10 h for both treatments (experiment 2). Although ingredients that were completely soluble (sucrose, urea) were used in experiment 3, the sediment was still evident suggesting that the sediment was largely of microbial not feed origin. Ammonia release from CMS was much faster than from urea during 2 h incubation. In conclusion, the results of the present studies suggest that the feed value of CMS as a source of nitrogen for ruminal bacteria was similar to that of urea when it was estimated in vitro.

Influence of Different Nitrogen Fertilizer Application Levels and Application Timing on Gluten Fraction and Bread Loaf Volume During Grain Filling (빵용 밀 품종의 등숙기 질소 시비 시기와 양이 글루텐 분획 및 빵 부피에 미치는 영향)

  • Cho, Seong-Woo;Kang, Taek-Gyu;Park, Chul Soo;Son, Jae-Han;Choi, Chang-Hyun;Cheong, Young-Keun;Yoon, Young-Mi;Kim, Kyong-Ho;Kang, Chon-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.229-238
    • /
    • 2018
  • The purpose of this study was to evaluate the effects of nitrogen fertilization amount and timing of application on protein content, dough properties, change in protein fraction, and bread loaf volume for Korean wheat cultivars, Baekkang, Joongmo2008, and Saekeumkang, for bread with a superior gluten composition during the grain filling stage. Protein content increased with an increase in the amount of N and timing of application. The SDS segmentation volume (SDSS) increased with an increase in N, but there was no effect of the timing of N application on SDSS. An increase in N amount and timing of application caused a difference in dough properties, such as water absorption, mixing time, and tolerance, among the cultivars. Soluble and insoluble polymeric and monomeric protein contents increased with an increase in N amount and timing of application the three Korean wheat cultivars. The effects of N amount and application timing on bread loaf volume (BLV) varied among the cultivars. The BLV of Saekeumkang increased regardless of the N amount and timing of application, but that of Baekkang and Joongmo2008 cultivars was reduced. However, there was a positive correlation between protein content with the addition of N fertilization and BLV. In addition, SDSS, mixing time, and protein fractions were positively correlated with BLV. Since the response of fertilizer conditions was different for each wheat cultivar, it is necessary to build a suitable fertilizing system for each of them. Additionally, since the environment is changing, such as abnormal climate during the maturing period, research is needed to establish appropriate fertilizer conditions for varieties of bread wheat.

Effect of Edible Coating on Hygroscopicity and Quality Characteristics of Freeze-Dried Korean Traditional Actinidia (Actinidia arguta) Cultivars Snack (가식성 코팅처리가 토종다래(Actinidia arguta) 동결건조 스낵의 흡습과 품질에 미치는 영향)

  • Kim, Ah-Na;So, Seul-Ah;Park, Chan-Yang;Lee, Kyo-Yeon;Rahman, M. Shafiur;Choi, Sung-Gil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1344-1350
    • /
    • 2016
  • The purpose of this study was to evaluate the effect of edible coating on hygroscopicity and quality characteristics of a freeze-dried Actinidia arguta snack. Freeze-dried A. arguta snacks were coated with various edible coating materials such as albumin, dextrin, and whole soy flour. There were no significant effects of coating on major quality properties such as moisture content, water activity, yield, water soluble index, water absorption index, and rehydration properties of all samples. Compared with non-coated samples, edible coated samples effectively inhibited hygroscopicity as a function of hygroscopic time. The samples coated with dextrin showed lower hygroscopicity than the other coated samples. In addition, the effects of edible coating treatment on hardness, total phenolic content, and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity were investigated. Edible coated samples had higher hardness, total phenolic content, and antioxidant activity than the non-coated samples as a function of hygroscopic time. Among edible coating materials, dextrin was the most effective coating material. Dextrin as an edible coating material for freeze-dried A. arguta snack may help to prevent hygroscopicity and extend market quality and shelf-life during storage.

Processing of Fish Meat Paste Products with Dark-Fleshed Fishes (2) Processing of Meat Paste Product with Mackerel (적색육 어류를 원료로 한 연제품의 제조 (2) 고등어 어묵의 제조)

  • PARK Yeung-Ho;KIM Dong-Soo;CHUN Seok-Jo;KANG Jin-Hoon;PARK Jin-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.352-362
    • /
    • 1985
  • In succession to the previous paper, the present study was directed to investigate the optimal processing conditions of meat paste products with mackerel. To improve the gel forming ability of meat paste, washing conditions with water and alkaline solution, setting time and temperature, and heating temperature were controlled, and the influences of the freshness of raw mackerel and mixing ratios of ordinary and dark muscle on the qualities of meat paste products were discussed. The most effective condition for the keeping freshness of raw mackerel meat among different storage conditions was the forozen storage at $-20^{\circ}C$, followed by the storage at $-3^{\circ}C$ and ice storages, and this relation was coincided with the effect for maintaining of gel forming ability among above conditions, but there was no effect on keeping freshness of raw mackerel in the storage at $25^{\circ}C$. Gel strength of meat washed with tap water decreased with washing time, particularly, the meat washed three times showed higher gel strength than the meat washed more than 5 times. And the removal ratios of water soluble protein were $60\%$ in the meat washed three times and $90\%$ in the meat washed nine times. Washing effect of raw mackerel meat with alkaline solution was great at pH $6.5{\sim}7.0$ of meat paste yielding the highest gel strength in the meat washed with $0.5\%$ sodium bicarbonate solution. Gel strength of meat paste product decreased with the increase of mixing ratios of ordinary and dark muscle in the raw meat. In the setting conditions of meat paste examined, 15 hours at $5^{\circ}C$ and 2 hours at $30^{\circ}C$. The most suitable temperature for gel forming in heating conditions was $90^{\circ}C$, fellowed by $100^{\circ}C\;and\;80^{\circ}C$.

  • PDF

Studies on the Compositional Change of Composts During Mushroom Cultivation (양송이 재배(栽培)에 따른 재배상퇴비(栽培床堆肥)의 성분변화(成分變化)에 관(關)한 연구(硏究))

  • Namgung, Hee
    • Applied Biological Chemistry
    • /
    • v.18 no.4
    • /
    • pp.203-218
    • /
    • 1975
  • In order to investigate the compositional change oil composts during the growing of cultivated mushroom (Agaricus bisporus), composts and mushrooms during the period of filling to ending under commercial conditions were subjected to chemical analyses. The results are summarized as follows and the mechanism of composting for mushroom cultivation was proposed. 1) The temperature change of growing bed and room was observed and the yield of mushroom for each cropping time was recorded to get $15.6kg/m^2$ in total crops. 2) Composts after filling showed pH 8.2 which dropped to 6.4 after casing and continued so up to ending. 3) On the dry weight basis of composts, crude ash increased whereas total nitrogen, ether extract and crude fibre decreased gradually to bring about the lowering of organic matter. 4) Total nitrogen of composts decreased gradually and more insoluble nitrogen was lost than soluble nitrogen. The C/N ratio of composts was initially 21 which was gradually lowered to 16. 5) The losses of ${\alpha}-cellulose$, pentosan and lignin in composts were 87%, 75%, and 60%, respectively, in which ${\alpha}-cellulose$ decreased markedly after casing. 6) Free reducing sugars of composts increased continuously. Gradually increased free amino acids till second cropping decreased again thereafter. Composts at the filling stage contained alanine, glutamic acid, glycine and serine in which glycine decreased markedly whereas proline increased remarkably upon mushroom cultivation. 7) Among minerals of composts, phosphorus and zinc tended to decrease, potassium and copper tended to increase anti sodium showed no marked change. 8) In comparison of mushrooms from different cropping time with respect to proximate composition, minerals, free reducing sugars and amino acids, no marked difference was observed. However, a little higher values were observed in crude fat, free reducing sugars and sodium content for early crops and in free amino acids and phosphorus content for late crops. Twelve free amino acids including alanine, serine, threonine, and glutamic acid were detected in the cultivated mushroom. 9) According to above experimental results, it was possible to support the mechanism of compositing that the formation of ammonia and decomposition of carbohydrates by mesophiles are followed by protein biosynthesis, formation of microbial bodies and nitrogen-rich lignin humus complex by thermophiles, thus supplying necessary nutrients for mushroom growth, along with residual carbohydrates.

  • PDF

Particle-size Effect of Silicate Fertilizer on Its Solubility and Mobility in Soil (토양(土壤)에 처리한 광재규산질비료의 입도별(粒度別) 용해도(溶解度) 및 이동성(移動性))

  • Yoo, Sun-Ho;Park, Lee-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.2
    • /
    • pp.57-63
    • /
    • 1980
  • The effect of particle size of silicate fertilizer, crushed slag from the steel industry, on the behavior of silicate in soil was investigated through laboratory experiments. The silicate fertilizer was sieved to obtain three fractions of particles, coarser than 10 mesh 20-35 mesh, and finer than 100 mesh. Silicate concentration of the extract obtained by shaking 20 mg of particles, coarser than 10 mesh, 20-35 mesh, and finer than 100 mesh, in 50 ml of distilled water for 4 hours was 0.3, 1.0, and 3.2 ppm respectively. As shaking the mixture of the silicate fertilizer and soil proceeded, silicate concentration of the extract increased, and this increase after 4 hour shaking was attributed mainly to dissolution of soil silicate. When the mixture of soil and the silicate fertilizer was incubated under submerged condition, silicate concentration of the solution decreased for the first 2-4 weeks, thereafter increased with incubation time. During this incubation period, silicate concentration of the solution changed inversely with pH of the solution. After 6-10 weeks, however, both silicate concentration and pH of the solution increased with incubation time. Silicate concentration of the effluent from the 14.5 cm soil column of which top 4.5 cm was packed with the mixture of 30 g of soil and 30 mg of the silicate fertilizer reached maximum at 0.94 pore volumes for the particles of 20-35 mesh and 1.03 pore volumes for the particles finer than 100 mesh, whereas the effluent concentration reached maximum at 0.88 pore volumes for the soil column without the silicate fertilizer treatment. Soil analysis made after water percolation revealed that 1.5 pore volumes of water could leach down large amount of the water soluble silicate but not the sodium acetate extractable silicate, from top 3-6 cm soil layer.

  • PDF

The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Escherichia coli alkaline phosphatase (대장균의 alkaline phosphatase가 융합된 anti-DR4 single-chain Fv (ScFv) 항체의 개발)

  • Han, Seung Hee;Kim, Jin-Kyoo
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • Enzyme immunoassay to analyze specific binding activity of antibody to antigen uses horseradish peroxidase (HRP) or alkaline phosphatase (AP). Chemical methods are usually used for coupling of these enzymes to antibody, which is complicated and random cross-linking process. As results, it causes decreases or loss of functional activity of either antibody or enzyme. In addition, most enzyme assays use secondary antibody to detect antigen binding activity of primary antibody. Enzymes coupled to secondary antibody provide a binding signal by substrate-based color development, suggesting secondary antibody is required in enzyme immunoassay. Additional incubation time for binding of secondary antibody should also be necessary. More importantly, non-specific binding activity caused by secondary antibody should also be eliminated. In this study, we cloned AP isolated from Escherichia coli (E. coli) chromosome by PCR and fused to) hAY4 single-chain variable domain fragment (ScFv) specific to death receptor (DR4) which is a receptor for tumor necrosis factor ${\alpha}$ related apoptosis induced ligand (TRAIL). hAY4 ScFv-AP expressed in E. coli showed 73.8 kDa as a monomer in SDS-PAGE. However, this fusion protein shown in size-exclusion chromatography (SEC) exhibited 147.6 kDa as a dimer confirming that natural dimerization of AP by non-covalent association induced ScFv-AP dimerization. In several immunoassay such as ELISA, Western blot and immunocytochemistry, it showed antigen binding activity by color development of substrates catalyzed by AP directly fused to primary hAY4 ScFv without secondary antibody. In summary, hAY4 ScFv-AP fusion protein was successfully purified as a soluble dimeric form in E. coli and showed antigen binding activity in several immunoassays without addition of secondary antibody which sometimes causes time-consuming, expensive and non-specific false binding.

Cooling Properties and Quality Changes during Storage of Citron (Citrus junos) (유자의 냉각특성 및 저장중 품질변화)

  • Jeong, Jin-Woong;Lee, Young-Chul;Kim, Jong-Hoon;Kim, Oni-Woung;Nahmgung, Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1071-1077
    • /
    • 1996
  • Quality changes in citron (Citrus junos) during storage were studied to investigate the efficiency, cooling properties and the washing and storage effects of hydrocooling method. As a result of plotting the nondimensionalized citron temperature versus cooling time, its cooling rate coefficient was shown to be $-0.012\;min^4{\sim}\;-0.017\;min^4\;(R^2=0.97{\sim}0.99)$ at center, and to be $-0.033\;min^4{\sim}\;0.075\;min^4\;(R^2=0.89{\sim}0.93)$ at surface. During storage, weight loss was more affected by storage temperature than by pretreatment condition and in reached $22{\sim}23%$ after 7 weeks at $15^{\circ}C\;and\;10{\sim}11%$ after 8 weeks at $5^{\circ}C$ in all samples. However, changes in moisture contents of hydrocooled citron were shown to be about $1{\sim}2%$ after 7 weeks while that of non-treated citron was about 3% after 1 week of storage at $5^{\circ}C$. And the change of pH, acidity and soluble solid content were not significantly different between each treatments during storage $5^{\circ}C\;and\;15^{\circ}C$. Changes in Hunter L, a, and b values of hydrocooled citron were lower than those of non-treated one as the storage time increased. The respiration rate of hydrocooled citron during storage at $15^{\circ}C$ was $103.63\;mg{\cdot}CO_2/kg{\cdot}hr$, which is about 50% of that of non-treated citron.

  • PDF

Quality Characteristics of Fermented Alcoholic Beverage with Astragali Radix Added (황기를 첨가한 발효주의 품질 특성)

  • Choi, Ji-Ho;Park, Ji-Hye;Kim, So-Ra;Lee, Choong-Hwan;Park, Shin-Young;Kim, Tack-Joong;Jeong, Seok-Tae;Choi, Han-Seok;Yeo, Soo-Hwan
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2012
  • We produced Hwanggiju (added 0.5~2.0% of ground Astragali Radix compared to starch contents) and investigated the physicochemical characteristics, DPPH free radical scavenging activities, polyphenol contents, and sensory evaluation. For all treatments, the initial pH was 3.9~4.1 and gradually decreased for 6 days from the 1st mashing day, and then rapidly increased to 4.67. As the fermentation proceeded, total acid contents increased in most of the treatments, reduced temporarily after the 2nd mashing time because of the addition of starch material and water, and then slightly rose again. There were little changes in pH and total acid contents followed by adding ground Astragali Radix (AR) to the fermentation periods. Amino acidities of all treatments showed patterns of which consistently rose as the fermentation proceeded and slightly reduced followed by increasing the addition rate of ground AR to the mashes. Soluble solid and alcohol contents also increased continuously and there were few differences among the treatments followed by adding to the ground AR rate. In color, there was no differences in L value, but a and b value showed significant differences by adding ground AR rate. In DPPH free radical scavenging activities, the control (no AR added) showed 53.6% and when grinded AR added, there were improving effects of the activities (0.52~6.9%). In polyphenol contents, the control was 1.05 mg/mL and the ground AR added treatments increased slightly. In the sensory evaluation, the control received a relatively high score ($5.0{\pm}1.0$), and the treatments which added 0.5% ground AR during the 2nd mashing time were also well received ($4.5{\pm}1.3$).

Effect of Shading Methods on Growth and Fruit Quality of Paprika in Summer Season (파프리카 여름재배시 차광방법이 생육과 과실특성에 미치는 영향)

  • Ha, Jun Bong;Lim, Chae Shin;Kang, Hyo Yong;Kang, Yang Su;Hwang, Seung Jae;Mun, Hyung Su;An, Chul Geon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2012
  • This study was carried out to investigate the effect of two shading methods, shading agent spray on the glasshouse and internal shading screen treatment, on the growth and fruit quality of paprika (Capsicum annuum L. 'Cupra' and 'Coletti') in summer season cultivation. In the shading agent treatment, a commercial shading agent diluted with water at a ratio of 1 : 4 was sprayed on the roof of a glasshouse. In the internal shading screen treatment, a 10~20% shaded screen was used during the day time when the sun radiation was greater than $700W{\cdot}m^{-2}$. Compared to the unshaded control, photosynthetic photon flux density (PPFD) decreased in the greenhouse in the shading agent (SA) and shading screen (SS) treatments by 20% and 30%, respectively. Lower air temperatures and higher relative humidities were observed in the SA than in both the control and the SS treatment. Time to reach the break point of humidity deficit $8g{\cdot}m^{-3}$ was 2 hours late in the SA than in both the control and the SS treatment. Compared to control, both the SA and the SS treatments showed lower instantaneous temperatures of leaf, fruit, and flower by $2^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively. There were no differences in number of branches, stem diameter, and leaf size among treatments although both shading treatments promoted plant height in both cultivars. Botrytis infection ratio declined with the SA treatment by 14.7% in 'Cupra' and 22.1% in 'Coletti' as compared to that in the control. Shading increased fruit size in both cultivars, whereas no differences were observed in the number of locules and thickness of fruit tissue among treatments. Shading treatment increased mean fruit weight by a range of 10 to 15 g per fruit, while it decreased soluble solids contents as compared to that in the control. Similar Hunter values were observed among treatments, while fruit firmness increased slightly in shading treatments. Compared to the control, shading treatments improved marketable fruits by 11.7~22.6% and increased the number of fruits per plant by 4~9.2 in both 'Cupra' and 'Coletti'. The results of this study indicate that shading agent application on the roof of glasshouse would be one of the most effective options to reduce heat stress imposed on the paprika crop in summer cultivation, resulting in improved crop growth and fruit yield.