• Title/Summary/Keyword: Soluble graphene

Search Result 8, Processing Time 0.02 seconds

Graphene nanosheets encapsulated poorly soluble drugs with an enhanced dissolution rate

  • Shen, Shou-Cang;Ng, Wai Kiong;Letchmanan, Kumaran;Lim, Ron Tau Yee;Tan, Reginald Beng Hee
    • Carbon letters
    • /
    • v.27
    • /
    • pp.18-25
    • /
    • 2018
  • In this study, graphene oxide(GO) was used as drug carriers to amorphize poorly watersoluble drugs via a co-spray drying process. Two poorly water-soluble drugs, fenofibrate and ibuprofen, were investigated. It was found that the drug molecules could be in the graphene nanosheets in amorphous or nano crystalline forms and thus have a significantly enhanced dissolution rate compared with the counterpart crystalline form. In addition, the dissolution of the amorphous drug enwrapped with the graphene oxide was higher than that of the amorphous drug in activated carbon (AC) even though the AC possessed a larger specific surface area than that of the graphene oxide. The amorphous formulations also remained stable under accelerated storage conditions ($40^{\circ}C$ and 75% relative humidity) for a study period of 14 months. Therefore, graphene oxide could be a potential drug carrier and amorphization agent for poorly water-soluble drugs to enhance their bioavailability.

Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer (수용성 고분자로 Wrapping된 그래핀 치환체와 PEDOT/PSS 복합체의 합성 및 특성)

  • Park, No Il;Lee, Seul Bi;Lee, Seong Min;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.581-585
    • /
    • 2014
  • We conducted investigation on the hybridization of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT : PSS) with graphene derivative (G-PSS), which has been prepared by wrapping reduced graphene oxide (RGO) with PSS. In situ polymerization of PEDOT/PSS in the presence of G-PSS afforded the PEDOT/PSS and graphene hybrid (GP). The analysis of XPS, IR and Raman spectroscopies for GP showed that PEDOT/PSS was successfully synthesized and hybridized with graphene. Compared to the G-PSS, GP showed an enhanced electrical conductivity of $4.46{\times}10^2S/m$ with a good wter-dispersity.

Properties of Cement Mortar with Graphene Oxide and Admixture (산화 그래핀과 혼화제를 혼입한 시멘트 모르타르의 특성)

  • Kim, Wan-Su;Park, Chang-Gun;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.261-262
    • /
    • 2023
  • Nanomaterials are being actively studied in the fields of cement and concrete. However, research on other nanomaterials is insufficient because much of the carbon-based nanomaterials are made up of carbon nanotubes. Therefore, in this study, carbon-based water-soluble graphene oxide was mixed into mortar according to the cement replacement rate to conduct a characteristic evaluation. As a result, as the substitution rate of graphene oxide increased, workability decreased, and there was no effect of enhancing compressive strength. In addition, it was confirmed that the compressive strength decreased due to a large amount of air bubbles when the mixture was mixed for the purpose of improving workability.

  • PDF

Properties and Applications of Graphite Oxides

  • Jeong, Hye-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.59-59
    • /
    • 2010
  • Graphene has attracted much interest because of its fascinating electronic structure with excellent electron mobility. However, there are some difficulties in making graphene of large and uniform area for real applications. One alternative is graphite oxide. Since graphite oxide is water soluble, it can be sprayed or spin-coating onto any substrates for applications such as Transparent Conducting Film (TCF) and Field Effect Transistor (FET). In this talk, chemical and physical properties of graphite oxide will be discussed. In addition, possible applications made of graphite oxide (GO) will be introduced.

  • PDF

Charge Transport Properties of Polyaniline-gold/graphite Oxide Composite Films

  • Basavaraja, C.;Kim, Won-Jung;Thinh, P.X.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.449-452
    • /
    • 2012
  • A polyaniline-gold composite was prepared via the polymerization of aniline hydrochloride with or without water-soluble graphite oxide using auric acid as an oxidant. The reaction products were characterized using Xray photoelectron spectroscopy. The thermal stability and embedded crystallinity of the composites were also investigated using thermogravimetric and X-ray diffraction analyses. The electrical properties of the composites were examined using cyclic voltammetric measurements at room temperature and temperature-dependent DC conductivity within 300-500 K. Compared to pure graphene oxide and polyaniline-gold composite, the polyaniline-gold-graphene composite exhibited higher crystallinity and thermal stability, and higher current density response under equivalent conditions.

Simultaneous reduction and functionalization of graphene oxide by polyallylamine for nanocomposite formation

  • Kim, Young-Kwan;Min, Dal-Hee
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • A novel strategy for the simultaneous reduction and functionalization of graphene oxide (G-O) was developed using polyallylamine hydrochloride (PAAH) as a multi-functional agent. The G-O functionalization by PAAH was carried out under basic conditions to catalyze the epoxide ring opening reaction of G-O with abundant amine groups of PAAH. We found that G-O was not only functionalized with PAAH but also reduced under the reaction condition. Moreover, the synthesized PAAH-functionalized G-O sheets were soluble in water and applicable to the synthesis of nanocomposites with gold nanoparticles.

Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells (수용성 공액고분자/그래핀 옥사이드 복합체를 이용한 유기태양전지의 정공수송층에 대한 연구)

  • Kim, Kyu-Ri;Oh, Seung-Hwan;Kim, Hyun Bin;Jeun, Joon-Pyo;Kang, Phil-Huyn
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • The poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F)] and graphene oxide (GO) was blended and irradiated with gamma ray under ambient condition. This WPF-6-oxy-F-GO composite was investigated as a hole-transporting layer (HTL) in organic solar cells (OSCs). Compared with the pristine GO, the sheet resistance ($R_{sheet}$) of irradiated WPF-6-oxy-F-GO was decreased about 2 orders of magnitude. The reason for the decrease of $R_{sheet}$ is the effect of efficient ${\pi}-{\pi}$ packing resulted from the formation of C-N bond between WPF6-oxy-F and GO. As a result, the efficiency of OSCs was dramatically enhanced ~ 6.10% by introducing irradiated WPF-6-oxy-F-GO as a HTL. WPF-6-oxy-F-GO is a sufficient candidate for HTL to facilitate the low-cost and high efficiency OSCs.