Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.1.029

Simultaneous reduction and functionalization of graphene oxide by polyallylamine for nanocomposite formation  

Kim, Young-Kwan (Department of Chemistry, Korea Advanced Institute of Science and Technology)
Min, Dal-Hee (Department of Chemistry, Seoul National University)
Publication Information
Carbon letters / v.13, no.1, 2012 , pp. 29-33 More about this Journal
Abstract
A novel strategy for the simultaneous reduction and functionalization of graphene oxide (G-O) was developed using polyallylamine hydrochloride (PAAH) as a multi-functional agent. The G-O functionalization by PAAH was carried out under basic conditions to catalyze the epoxide ring opening reaction of G-O with abundant amine groups of PAAH. We found that G-O was not only functionalized with PAAH but also reduced under the reaction condition. Moreover, the synthesized PAAH-functionalized G-O sheets were soluble in water and applicable to the synthesis of nanocomposites with gold nanoparticles.
Keywords
graphite; gold nanoparticle; graphene; nanocomposite; surface functionalization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ou YY, Huang MH. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J Phys Chem B, 110, 2031 (2006). http://dx.doi.org/10.1021/jp055920o.   DOI   ScienceOn
2 Bei F, Hou X, Chang SLY, Simon GP, Li D. Interfacing colloidal graphene oxide sheets with gold nanoparticles. Chemistry, 17, 5958 (2011). http://dx.doi.org/10.1002/chem.201003602.   DOI   ScienceOn
3 Tang XZ, Cao Z, Zhang HB, Liu J, Yu ZZ. Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chem Commun, 47, 3084 (2011). http://dx.doi.org/10.1039/c0cc05613h.   DOI   ScienceOn
4 Zhang J, Yang H, Shen G, Cheng P, Guo S. Reduction of graphene oxide vial-ascorbic acid. Chem Commun, 46, 1112 (2010). http://dx.doi.org/10.1039/b917705a.   DOI   ScienceOn
5 Zhu C, Guo S, Fang Y, Dong S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4, 2429 (2010). http://dx.doi.org/10.1021/nn1002387.   DOI   ScienceOn
6 Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc, 132, 7279 (2010). http://dx.doi.org/10.1021/ja100938r.   DOI   ScienceOn
7 Kim YK, Kim MH, Min DH. Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun, 47, 3195 (2011). http://dx.doi.org/10.1039/ c0cc05005a.   DOI   ScienceOn
8 Park S, Dikin DA, Nguyen ST, Ruoff RS. Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C, 113, 15801 (2009). http://dx.doi.org/10.1021/jp907613s.   DOI   ScienceOn
9 Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun, 3880 (2009). http://dx.doi.org/10.1039/b905085j.   DOI   ScienceOn
10 Herrera-Alonso M, Abdala AA, McAllister MJ, Aksay IA, Prud'homme RK. Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir, 23, 10644 (2007). http://dx.doi.org/10.1021/la0633839.   DOI   ScienceOn
11 Kim YK, Min DH. Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir, 25, 11302 (2009). http://dx.doi.org/10.1021/la9029744.   DOI   ScienceOn
12 Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem, 2, 1015 (2010). http://dx.doi.org/10.1038/nchem.907.   DOI   ScienceOn
13 Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.   DOI   ScienceOn
14 Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.   DOI   ScienceOn
15 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
16 Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater, 20, 4490 (2008). http://dx.doi.org/10.1002/adma.200801306.   DOI   ScienceOn
17 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.   DOI   ScienceOn
18 Zhou X, Liu Z. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chem Commun, 46, 2611 (2010). http://dx.doi.org/10.1039/b914412a.   DOI   ScienceOn
19 Salas EC, Sun Z, Luttge A, Tour JM. Reduction of graphene oxide via bacterial respiration. ACS Nano, 4, 4852 (2010). http://dx.doi.org/10.1021/nn101081t.   DOI   ScienceOn
20 Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958).   DOI