• 제목/요약/키워드: Solubility enhancement

검색결과 79건 처리시간 0.023초

푸마르산을 이용한 나테글리니드 함유 속방출형 제형의 약물방출 개선에 관한 연구 (Immediate Drug Release Enhancement of Nateglinide Using Fumaric Acid)

  • 이성훈
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.506-512
    • /
    • 2017
  • 본 연구의 목적은 나테글리니드를 함유하는 제형에 있어서 약물방출 속도 및 생체이용률을 개선하는 것이다. 이를 위해, 약물의 결정형의 선택 및 입자 크기의 최적화를 진행하였으며, 약물의 pH 의존적인 용해도를 극복하기 위하여 제형에 pH 조절제를 포함하여 pH에 따른 약물의 용출속도 저하를 개선하고자 하였다. 또한 개선된 약물방출 속도 확인을 위하여 용출시험을 실시하였다. 약물의 결정형에 따른 용출속도를 비교한 결과로는 H-type의 원료가 B-type에 비해 60분에서의 용출률이 6.2% 더 빠르게 나타나는 것을 확인하였으며, 약물의 입도 차에 따라서는 평균입도 $1.13{\mu}m$인 원료가 $2.28{\mu}m$인 원료에 비해 60분에서의 용출률이 약 20% 빠르게 나타나는 것을 확인할 수 있었다. 또한 pH 조절제로서 유기산인 푸마르산을 제형에 포함시킨 결과, 용출시험 60분 경과 후 50% 이상의 용출 속도 개선을 확인할 수 있었다. 결론적으로, 약물의 결정형 및 입도의 조절을 통해 나테글리니드의 용출 속도를 증가시킬 수 있으며, pH 조절제로서 푸마르산을 제형에 적용할 경우 용출속도 개선 측면에서 동반상승 효과를 얻을 수 있다.

Soluble Expression of Recombinant Human Smp30 for Detecting Serum Smp30 Antibody Levels in Hepatocellular Carcinoma Patients

  • Zhang, Sheng-Chang;Huang, Peng;Zhao, Yong-Xiang;Liu, Shu-Yan;He, Shu-Jia;Xie, Xiao-Xun;Luo, Gou-Rong;Zhou, Su-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2383-2386
    • /
    • 2013
  • Senescence marker protein 30 (SMP30), a hepatocellular carcinoma (HCC) associated antigen, was earlier shown by our research group to be highly expressed in HCC paracancerous tissues, but have low levels in HCC tissues. In order to detect anti-SMP30 antibody in serum of HCC patients, we established pET30a-SMP30 and pColdIII-SMP30 expression systems in Escherichia coli. However, the expression product was mainly in the form of inclusion bodies. In this research, we used several combinations of chaperones, four molecular chaperone plasmids with pET30a-SMP30 and five molecular chaperone plasmids with pColdIII-SMP30 to increase the amount of soluble protein. Results showed that co-expression of HIS-SMP30 with pTf16, combined with the addition of osmosis-regulator, and a two-step expression resulted in the highest enhancement of solubility. A total of 175 cases of HCC serum were studied by ELISA to detect anti-SMP30 antibody with recombinant SMP30 protein. Some 22 were positive and x2 two-sided tests all showed P>0.05, although it remained unclear whether there was a relationship between positive cases and clinical diagnostic data.

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • 한국미생물·생명공학회지
    • /
    • 제48권1호
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상 (Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

디클로페낙나트륨 및 디클로페낙나트륨과 ${\beta}$-시클로덱스트린 포접물의 흰쥐 위 점막 손상 비교 (Comparison of Diclofenac Sodium and Diclofenac $Sodium-{\beta}-cyclodextrin$ Complexation on Gastric Mucosal Injury in Rats)

  • 박재훈;김종환;김주일;김승조;서성훈;이경태
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권1호
    • /
    • pp.11-14
    • /
    • 1997
  • This laboratory has recently reported the solubility and in vivo absorption enhancement of diclofenac sodium by ${\beta}-cyclodextrin$ complexation. The acute gastroduodenal mucosa injury provoked by administration of 34 mg/kg and 68 mg/kg of a diclofenac sodium (DS) and equivalent dose of new formulation [diclofenac sodium-beta-cyclodextrin complexation$(DS-{\beta}-CD)$] was evaluated and compared. Microscopic examinations, performed after 18-hrs treatment, demonstrated that $DS-{\beta}-CD$ was less gastrolesive than DS. The drop in gastrophy after a single dose of the assigned drug was considerably greater for DS than for $DS-{\beta}-CD$, which registered similar values to control. Since gastrophy is an expression of the anatomy-functional integrity of the gastric barrier, the results indicate that $DS-{\beta}-CD$ exerts less direct acute damage on the gastric mucosa. Therefore, when administered short-term, $DS-{\beta}-CD$ appears to be less gastrolesive than the standard DS formulation.

  • PDF

New Gene Cluster from Thermophile Bacillus fordii MH602 for Conversion of DL-5-Substituted Hydantoins to L-Amino Acids

  • Mei, Yan-Zhen;Wan, Yong-Min;He, Bing-Fang;Ying, Han-Jie;Ouyang, Ping-Kai
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1497-1505
    • /
    • 2009
  • The thermophile Bacillus fordii MH602 was screened for stereospecifically hydrolyzing DL-5-substituted hydantoins to L-$\alpha$-amino acids. Since the reaction occurs at higher temperature, the advantages for enhancement of substrate solubility and for racemization of DL-5-substituted hydantoins during the conversion were achieved. The hydantoin metabolism gene cluster from thermophile is firstly reported in this paper. The genes involved in hydantoin utilization (hyu) were isolated on an 8.2-kb DNA fragment by restriction site-dependent PCR, and six ORFs were identified by DNA sequence analysis. The hyu gene cluster contained four genes with novel cluster organization characteristics: the hydantoinase gene hyuH, putative transport protein gene hyuP, hyperprotein gene hyuHP, and L-carbamoylase gene hyuC. The hyuH and hyuC genes were heterogeneously expressed in E. coli. The results indicated that hyuH and hyuC are involved in the conversion of DL-5-substituted hydantoins to an N-carbamyl intermediate that is subsequently converted to L-$\alpha$-amino acids. Hydantoinase and carbamoylase from B. fordii MH602 compared respectively with reported hydantoinase and carbamoylase showed the highest identities of 71% and 39%. The novel cluster organization characteristics and the difference of the key enzymes between thermopile B. fordii MH602 and other mesophiles were presumed to be related to the evolutionary origins of concerned metabolism.

DIS 공정에 의한 Polyethylene Glycol 함침 알로에 베라 겔의 제조 및 특성화 (Preparation and Characterization of PEG-impregnated Aloe Gel through DIS Processing of Aloe vera Leaf Slice)

  • 권혜미;허원;이신영
    • KSBB Journal
    • /
    • 제28권6호
    • /
    • pp.356-365
    • /
    • 2013
  • The novel Aloe gels were prepared with dewatering and impregnation by soaking (DIS) processing of Aloe vera leaf slice at four different temperatures (25, 35, 45 and $55^{\circ}C$), using dehydration solution of 40% (w/v) polyethylene glycol (PEG4000). The PEG-impregnation to Aloe vera leaf slice during DIS was observed depending on immersion temperature, and the PEG-impregnated Aloe vera gel (PEG-i-AVG) obtained was characterized using $^1H$ NMR, FT-IR, GPC, XRD and TGA. The PEG-i-AVG had the higher levels of Aloe bioactives (glucomannan and O-acetyl contents) and better quality indices by $^1H$ NMR and FT-IR spectroscopy than those of native Aloe gel. Also, the obtained Aloe gel maintained the bimodal patterns in higher molecular weight region by GPC indicating no degradation of polysaccharide from native Aloe gel. The result observed by SEM confirmed a surface modification by forming the porous structure, and TGA result exhibited better thermal stability than that of native Aloe gel. XRD result revealed that the crystalline structure in Aloe gel was led by incorporation of PEG. Significant decrease of %insolubility and high enhancement of water solubility index were observed, respectively, and highly ordered conformation such as a helix structure was also indicated by Congo red reaction. We concluded that the modification effect for enhancing function of native Aloe gel was successfully obtained by DIS process using PEG as a dehydrating agent. These results suggested that this DIS process had a high potential for developing a new minimally processed product from Aloe vera leaf.

디젤오염토양 복원 효율 증진을 위한 음이온/비이온 계면활성제 토양세척공정에 초음파 적용 영향 (The Effect of Ultrasound Application to Anionic/Non-ionic Surfactant Aided Soil-washing Process for Enhancing Diesel Contaminated Soils Remediation)

  • 조상현;손영규;남상건;최명찬;김지형
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.247-254
    • /
    • 2010
  • Ultrasound and Surfactant aided soil washing process has been shown to be an effective method to remove diesel from soils. The use of surfactants can improve the mobility of diesel in soil-water systems by increasing solubility of adsorbed diesel into surfactant micelles. However, a large amount of surfactant is required for treatment. In addition, synthetic surfactants, specially anionic, are more toxic and the surfactant wastewater is hard to treat by conventional wastewater treatments even by AOPs. Ultrasound improves desorption of the diesel adsorbed on to soil. The mechanisms are based on physical breakage of bonds by hot spot, directly impact onto soil particle surface, the fragmentation of long-chain hydrocarbons by micro-jet and microstreaming in the soil pores. The use of ultrasound as an enhancement method in both anionic and nonionic surfactant aided soil-washing processes were studied. And all experiments were examined proceeded under CMC surfactant concentration, frequency 35 khz, power 400 W, Soil-water ratio 1:3(wt%), particle size 0.24 ~ 2mm and initial diesel concentration. 20,000 mg/kg. Combination with ultrasound showed significant enhancements on all the processes. Especially, nonionic surfactant Triton-X100 with ultrasound showed remarkable enhancements and diesel removal rate enhanced by ultrasound helps desorpting of surfactant adsorbed onto soils which prevented decreasing surfactant activity.

CZ 방법에 의해 성장된 실리콘에서 산소 석출물의 성장/감소에 관한 모델 및 해석 (Modeling and Analysis for the Growth/Dissolution of Oxygen Precipitation in CZ-grown Silicon)

  • 고봉균;곽계달
    • 전자공학회논문지D
    • /
    • 제35D권10호
    • /
    • pp.29-38
    • /
    • 1998
  • 본 논문에서는 CZ 방법으로 성장된 실리콘에서 임의의 열처리 과정 또는 VLSI 공정중에 발생하는 산소석출물(oxygen precipitates)의 성장 및 감소에 대한 모델을 유도하고 수치해석법으로 시뮬레이션을 수행하여 모델에 대한 타당성을 검증하였다. 확산제한 성장법칙(diffusion-limited growth law)과 DBET(detailed balance equilibrium theory)를 이용하여 산소 석출물의 성장률과 감소율을 유도하고 이를 CREs(chemical rate equations)와 PFE (Fokker-Planck equation)이 결합된 식에 적용하여 수치해석법으로 풀었다. 또한 어닐링 분위기에 따라 표면에서 일어나는 현상을 달리 고려해야 하는데, 특히 O₂가스 분위기에서는 산화막이 성장되는 조건을 고려해야 하므로 산화막 성장 모델과 산소 용해도 증가등의 영향을 고려하였다. 이 방법으로 기존의 결과보다 더 정확하게 깊이에 따른 산소 농도의 분포와 산소 석출물의 밀도분포 함수를 계산할 수 있었다.

  • PDF

Enhancement of antimicrobial properties of shoe lining leather using chitosan in leather finishing

  • Mahmud, Yead;Uddin, Nizam;Acter, Thamina;Uddin, Md. Minhaz;Chowdhury, A.M. Sarwaruddin;Bari, Md. Latiful;Mustafa, Ahmad Ismail;Shamsuddin, Sayed Md.
    • Advances in materials Research
    • /
    • 제9권3호
    • /
    • pp.233-250
    • /
    • 2020
  • In this study, a chitosan based coating method was developed and applied on the shoe lining leather surface for evaluating its inhibition to bacterial and fungal attacks. At first, chitosan was prepared from raw prawn shells and then the prepared chitosan solution was applied onto the leather surface. Secondly, the characterization of the prepared chitosan and chitosan treated leather was performed by solubility test, ATR-FTIR, XRD pattern, SEM and TGA. Evaluation of antimicrobial efficacy of chitosan was assessed against two gram positive, two gram negative bacteria and a reputed fungi by agar diffusion test. The results of this study demonstrated that chitosan took place in both the surface of collagen fibres and inside the collagen matrix of crust leather. The chitosan showed strong antimicrobial activities against all the tested microorganisms and the inhibition increased with increasing percentage of chitosan. Therefore, the prepared chitosan in this study can be an environment friendly biocide, which functions simultaneously against different spoilage bacteria and fungi on the finished leather surface. Thus by using the prepared chitosan in shoe lining leather, the possibility of microbial attack during shoe wearing can be minimized which is one of the important hygienic requirements of footwear.