• Title/Summary/Keyword: Solidification.

Search Result 1,336, Processing Time 0.028 seconds

The Effect of $C_2Cl_6$ Addition on Surface Ignition and Oxidation of Molten AM100A Mg alloy (마그네슘 합금 용탕 표면 산화 및 발화에 대한 $C_2Cl_6$의 영향)

  • Choi, Seung-Hwa;Kim, Dae-Hwan;Kim, Hee-Kyung;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.231-234
    • /
    • 2010
  • The effect of $C_2Cl_6$ for preventing to the surface oxidation and ignition of molten Mg alloy was studied with metallographic analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The alloy used for this study was AM100A Mg casting alloy with high strength. In order to investigate the surface protective characteristic of this molten alloy by $C_2Cl_6$ addition, we added them into molten AM100A alloy at $700^{\circ}C$ and then the melts were slowly cooled under a protective atmosphere of air containing Ar gas and $C_2Cl_6$ flux addition. The result found that the surface oxidation and ignition reaction of molten AM100A Mg alloy by adding $C_2Cl_6$ flux was more slowly occurred than that of the only a protective atmosphere of containing Ar gas with increasing time. This result was due to a dense protective film formed containing $MgCl_2$ on surface of molten Mg alloy during casting and solidification. The $MgCl_2$ was formed by a reaction of $C_2Cl_6$ with molten Mg.

Effect of Fe, Mn Content on the Castability in Al-9wt%Si-Mg System Alloys for High Elongation (고신율 금형주조용 Al-9wt%Si-Mg계 합금의 주조특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.33 no.6
    • /
    • pp.233-241
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-9wt%Si-xMg-yFe-zMn alloy has been studied. The alloy was composed of ${\alpha}$-Al phase, Al+eutectic Si phase, ${\beta}$-Al5FeSi compound and chinese script ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compound. ${\beta}$-$Al_5FeSi$ and ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compounds assumed to effect the fluidity and shrinkage behaviors of the alloy during solidification due to the crystallization of ${\alpha}$-$Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}$-$Al_5FeSi$ compounds above eutectic temperature. As Fe and Mn contents of Al-9wt%Si-0.3wt%Mg system alloy increased from 0.15wt% to 0.6wt% and from 0.3wt% to 0.7wt%, fluidity of the alloy decreased by 5.7% and 3.3%, respectively. And as Mg content of Al-9wt%Si-0.45wt%Fe-0.5wt%Mn system alloy increased from 0.3wt% to 0.4wt%, fluidity of the alloy decreased by 8.6%. When Fe content of the alloy increased from 0.15wt% to 0.6wt%, macro shrinkage ratio decreased from 6.1% to 4.1%, and micro shrinkage ratio increased from 0.04% to 0.24%. Similarly, Mn content of the alloy increased from 0.3wt% to 0.7wt%, macro shrinkage ratio decreased from 6.0% to 4.5% and micro shrinkage ratio increased from 0.12% to 0.18%. Judging from the castability of the alloy, Al-9wt%Si-0.3wt%Mg alloy with low content of Fe and Mn, 0.1wt% Fe and 0.3wt% Mn, is recommendable.

Mechanical Behavior of Directionally Solicified (Y2O3)ZrO2/Al2O3 Eurtctic Fibers

  • Park, Deok-Yong;Yang, Jenn-Ming
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The microstructural features and mechanical behavior of directionally solidified $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fibers after extended beat treatment in oxidizing environment were investigated. The fiber was grown continuously by an Edge-defined Film-fed Growth (EFG) technique. The microstructure was characterized using X-Ray Diffraction (XRD) and Scanning Electron Microscopy(SEM). The microstructure of the fiber in the as-fabricated state consists of highly oriented colonv and fine lamellar microstructure along the fiber axis. Tensile strength of the $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber remained unchanged with heat treatment at temperatures between $1200^{\circ}C$ and $1500^{\circ}C$ up to 300h. The weibulls modulus remained fairly constant after extended thermal exposure. The fracture toughness and crack propagation behavior were investigated. The fracture toughness ($K_{1C}$) of the $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber in the as-fabricated state were measured to be 3.6 ${\pm}$ 0.5 MPa${\cdot}m^{1/2}$ by an indentation technique and 2.2 ${\pm}$ 0.2 MPa${\cdot}m^{1/2}$ by assuming elliptical flaw of a semi-infinite solid, respectively. The $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber showed a radial (Palmqvist) crack type and exhibited an orthotropic crack growth behavior under 100 g load.

Synthesis and Magnetic Properties of Body-centered-tetragonal Fe-Co Alloy (체심정방정 구조 Fe-Co계 합금상의 합성 및 그 자기적 특성)

  • Kim, K.M.;Kwon, H.W.;Lee, J.G.;Yu, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.129-134
    • /
    • 2017
  • Bulk-type body-centered-tetragonal Fe-Co alloy was synthesised by utilising a conventional alloy preparation technologies, such as melting, solidification, and homogenising treatments, and its magnetic properties were investigated. In the $(Fe_{100-x}Co_x)_{1-y}C_y$ alloy, the composition range, from which single phase body-centered-tetragonal alloy (martensite phase) was obtained, was severely limited: Co content x = 2.5, and C content y = 0.062. Tetragonality(c/a) of the synthesised body-centered-tetragonal $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$ alloy was 1.05. Magnetocrystalline anisotropy constant ($K_1$) of the body-centered-tetragonal $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$ alloy was measured to be $9.8{\times}10^5J/m^3$), which was 3.1 time as high as the pure iron (${\alpha}-Fe$).

Lava-calcification of the volcanic cave in Jeju-do island (제주도 화산동굴의 용암석회질화 -제주도 북제주군 협재리 건지굴 중심-)

  • Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.67
    • /
    • pp.1-9
    • /
    • 2005
  • The lava-calcification which was found in Geunjisul located in Jeju-do (Korea) was investigated to analyse the cause of calcification through the internal factor of cave structure and surroundings in company with relevant ecological system. The volcanic cave is degenerated after formation from volcano lava extravasation, however, the cave became more stronger with solidification and petrification by the reinforced structure of calcification as the cement in concrete buildings unprecedentedly if the lava-calcification occurred in the cave. Such a Progressive Phenomena of lava-calcification was verified in progress first in Geonjigul located at Hyubjae-ri, but those would be found in other simiiar case of caves distributed and connected with seaside of shelly sand beach.

Al-10wt%Ti-4wt%F Alloys as In-situ Composites through Rapid Solidification(II) (급냉응고법에 의한 In-Situ 복합재료로서의 Al-10wt%Ti-4wt%Fe 합금 (II))

  • Kim, Hye-Seong;Jeong, Jae-Pil;Gwon, Suk-In;Geum, Dong-Hwa
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1127-1132
    • /
    • 1998
  • The possibilities of producing Al-10%Ti-4%Fe composites through in-situ processing and thus achieving mechanical property improvements over binary Al-10%Ti to a level or higher exhibited by PM SiC/A12124 composites were explored in this study. The microstructure of in-situ processed Al-10%Ti-4%Fe composites was similar to that of Al matrix composites reinforced with discontinuous SiC particulates(SiC/A12124) and significant enhancements in elastic modulus, tensile strength and wear resistance were observed as compared to Al-10%Ti alloy. These results can be attributed to the in-situ formed Al. Fe by third element addition, leading to additional dispersion strengthening effect over $Al_3Ti$ phase reinforcement in Al-Ti system.

  • PDF

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Kim, Soon-Kook;Jang, Chang-Woo;Lee, Jun-Hee;Jung, Chan-Hoi;Seo, Yong-Gwon;Kang, Choong-Gil
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.516-523
    • /
    • 2006
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automobile industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die-casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. In this study, step-dies and flowability tests for AM50 were performed by die-casting process according to various combination of casting pressure and plunger velocity. We were discussed to velocity effect of forming conditions followed by results of microstructure, FESEM-EDX, hardness and tensile strength. Experimental results represented that the conditions of complete filling measured die-casting pressure 400 bar, 1st plunger velocity 1.0 m/s and 2nd plunger velocity 6.0 m/s. The increasing of 2nd plunger velocity 4.0 to 7.0 m/s decreased average grain size of $\alpha$ phase and pore. It was due to rapid filling of molten metal, increasing of cooling rate and pressure followed by increased 2nd plunger velocity. The pressure should maintain until complete solidification to make castings of good quality, however, the cracks were appeared at pressure 800bar over.

Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process (PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선)

  • ;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

A Study to Improve Weld Strength of Al 6k21-T4 Alloy by using Laser Weaving Method (레이저 위빙을 이용한 Al 6k21-T4 합금의 용접 강도 향상)

  • Kim, Byung-Hun;Kang, Nam-Hyun;Park, Yong-Ho;Ahn, Young-Nam;Kim, Cheol-Hee;Kim, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.49-53
    • /
    • 2009
  • For Al 6k21-T4 alloy, linear laser welding produced the lower shear-tensile strength than the base metal. This study improved the shear-tensile strength by using the weaving laser at the optimized welding condition, i.e., 2mm weaving width and 25Hz frequency. The large weaving width increased the weld width, therefore improving the joint strength. For the specimen of low strength, the porosity was distributed continuously along the intersection between the plates and fusion line. However, for the optimized welding condition, large oval-shaped porosities were located only in the advancing track of the concave part. Regardless of the welding condition, solidification cracking was initiated at the intersection and propagated through small porosities in the weld part. furthermore, the concave part had more significant porosity in the weld and HAZ, respectively than the convex part. The continuity of porosities played a key role to determine the strength. And, the weaving width was an important parameter to control the strength.

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.