• Title/Summary/Keyword: Solidification process

Search Result 501, Processing Time 0.027 seconds

Case study of riser design using casting simulation in gravity cast method (중력주조 공법에서 주조해석 시뮬레이션을 이용한 압탕설계 사례 연구)

  • Ko, Sang-Bae;Han, Ki-Won;Kim, Hyung-Jun;Han, Tae-Soo;Han, Seong-Ryeol;Kim, kyung-A;Choi, Kye-Kwang;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2021
  • The casting method uses a mold to solidify a liquid metal to make a solid metal. Since it uses a liquid metal with the least deformation resistance, it has the characteristic that it can easily manufacture even a complex shape. However, the process of solidifying a liquid metal into a solid metal inevitably involves a volume change and contains internal defects such as shrinkage holes. Therefore, in the design of the casting plan, an excess volume called a pressurization compensates for the volume shrinkage. in the product, and it induces the shrinkage hole defects to occur in parts other than the product1). In this study, casting analysis was performed using casting analysis software (anycasting) in order to optimize the design of the tilting gravity casting method for automobile brackets. In particular, the filling and solidification analysis according to the shape and volume of the pressurized metal was conducted, and applied to the actual product to study the effect of the pressurized metal on the shrinkage defect. Through this study, it is possible to understand the effect of the pressure metal on shrinkage defects in the actual product and propose a design of the pressure metal that improves reliability and productivity.

Effect of Freeze Drying Condition of WO3/Tert-Butyl Alcohol Slurry on the Microstructural Characteristics of Porous Body (WO3/tert-butyl alcohol 슬러리의 동결건조 조건이 다공체의 미세구조 특성에 미치는 영향)

  • Lee, Eui Seon;Heo, Youn Ji;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.331-335
    • /
    • 2021
  • The effects of drying temperature on the microstructure of porous W fabricated by the freeze-casting process of tert-butyl alcohol slurry with WO3 powder was investigated. Green bodies were hydrogen-reduced at 800℃ for 1 h and sintered at 1000℃ for 6 h. X-ray diffraction analysis revealed that WO3 powders were completely converted to W without any reaction phases by hydrogen reduction. The sintered body showed pores aligned in the direction of tert-butyl alcohol growth, and the porosity and pore size decreased as the amount of WO3 increased from 5 to 10vol%. As the drying temperature of the frozen body increased from -25℃ to -10℃, the pore size and thickness of the struts increased. The change in microstructural characteristics based on the amount of powder added and the drying temperature was explained by the growth behavior of the freezing agent and the degree of rearrangement of the solid powder during the solidification of the slurry.

Microstructure and Strengthening Mechanism Characteristics of Titanium Fabricated by SPS Method after Mechanical Milling Treatment (기계적 밀링 처리하여 SPS법으로 제작한 티타늄의 미세조직과 강화기구 특성)

  • Chang-Suk Han;June-Sung Kim;Woo-Bin Sim
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.242-250
    • /
    • 2023
  • Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

The Corrosion Properties of Zr-Cr-NM Alloy Metallic Waste Form for Long-term Disposal (Zr-Cr-NM 금속폐기물고화체 합금의 장기처분을 위한 부식특성)

  • Han, Seungyoub;Jang, Seon Ah;Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Ki Rak;Park, Hwan Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • KAERI is conducting research on spent cladding hulls and additive metals to generate a solidification host matrix for the noble metal fission product waste in anode sludge from the electro-refining process to minimize the volume of waste that needs to be disposed of. In this study, alloy compositions Zr-17Cr, Zr-22Cr, and Zr-27Cr were prepared with or without eight noble metals representing fuel waste using induction melting. The microstructures of the resulting alloys were characterized and electrochemical corrosion tests were conducted to evaluate their corrosion characteristics. All the compositions had better corrosion characteristics than other Zr-based alloys that were evaluated for comparison. Analysis of the leach solution after the corrosion test of the Zr-22Cr-8NM specimen indicated that the noble metals were not leached during corrosion under 500 mV imposed voltage, which simulates a highly oxidizing disposal environment. The results of this study confirm that Zr-Cr based compositions will likely serve as chemically stable waste forms.

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF

Effect of Casting Temperature and Speed on Formation of Surface Defect in Al-8Zn-2Mg-2Cu Billets Fabricated by Direct-Chill Casting Process (수직 연속주조 공정으로 제조된 Al-8Zn-2Mg-2Cu 빌렛의 표면 결함 형성에 미치는 주조 온도와 주조 속도의 영향)

  • Lee, Yoon-Ho;Kim, Yong-You;Lee, Sang-Hwa;Kim, Min-Seok;Euh, Kwangjun;Lee, Dong-Geun
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.241-251
    • /
    • 2021
  • 7000-series aluminum alloys are noted for their superior strength compared with other Al alloys, and their billets are generally fabricated by direct-chill (DC) casting. Surface defects in a DC-cast aluminum billet are mainly related to exudation and the meniscus freezing phenomenon, which are influenced by alloy compositions, casting speed, and casting temperature. 7000-series aluminum alloys have a wide freezing range during solidification, which makes it easy for casting defects to occur. In this study, we investigated surface defect evolution in casting billets of Al-8Zn-2Mg-2Cu alloy fabricated by a DC casting process. The billets showed "wavy" or "dotted" surfaces. The wavy surface was formed by meniscus freezing at a lower casting speed (200 mm/min) and temperature (655 ℃). In the wavy surface, refined dendritic cells were observed in a concave region due to the constitutional supercooling caused by meniscus freezing. Meanwhile, at a higher casting temperature (675 ℃), the dotted surface was formed by pore formation. In the dotted surfaces in the billet formed at a high casting speed (230 mm/min), an exudation layer was formed by the high metallostatic head pressure. The dotted region and the smooth region had a refined dendritic morphology and a columnar morphology at the exudation layer, respectively. This is attributed to the formation of gas pores in the dotted region.

Solid state reactive sintering of cold pressed thermoelectric Mg3Sb2 (냉간 압축 성형한 Mg3Sb2 열전재료의 고상 반응 소결)

  • Kim, In-Ki;Jang, Kyung-Wook;Oh, Han-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.176-182
    • /
    • 2014
  • We intended to prepare $Mg_3Sb_2$ compound bodies through solid state reactive sintering after cold-pressing mixtures of elementary Mg and Sb powders and investigated the crystal phases of the sintered bodies according to Mg/Sb mole ratios and reaction temperatures. The $Mg_3Sb_2$ bodies sintered at the temperatures of 773~843 K showed typical crystalline phases of $Mg_3Sb_2$ compounds, but their diffraction angles in XRD patterns were slightly different along with the vertical axis of the bodies obtained. All the bottom parts of the sintered $Mg_3Sb_2$ bodies were composed of the typical crystalline phases of $Mg_3Sb_2$ compounds and their diffraction angles were completely in accord with those of the ${\alpha}-Mg_3Sb_2$ phase, when Mg : Sb = 3.15 : 1.85 at 823 K, or when the Mg moles were greater than or equal to 3.10 at 843 K. It was considered that the slightly remaining Mg phases were formed by precipitation from ${\alpha}-Mg_3Sb_2$ phases during the solidification process of liquid phase.

Microstructure and Hardness of Yb:YAG Disc Laser Surface Overlap Melted Cold Die Steel, STD11 (Yb:YAG 디스크 레이저로 표면 오버랩 용융된 냉간금형강, STD11의 미세조직과 경도)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yun, Jung Gil;Oh, Myeong-Hwan;Kim, Byung Min;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Laser surface Melting Process is getting hardening layer that has enough depth of hardening layer as well as no defects by melting surface of substrate. This study used CW(Continuous Wave) Yb:YAG and STD11. Laser beam speed, power and beam interval are fixed at 70mm/sec, 2.8kW and 800um respectively. Hardness in the weld zone are equal to 400Hv regardless of melting zone, remelting zone overlapped by next beam and HAZ. Similarly, microstructures in all weld zone consist of dendrite structure that arm spacing is $3{\sim}4{\mu}m$, matrix is ${\gamma}$(Austenite) and dendrite boundary consists of ${\gamma}$ and $M_7C_3$ of eutectic phase. This microstructure crystallizes from liquid to ${\gamma}$ of primary crystal and residual liquid forms ${\gamma}$ and $M_7C_3$ of eutectic phase by eutectic reaction at $1266^{\circ}C$. After solidification is complete, primary crystal and eutectic phase remain at room temperature without phase transformation by quenching. On the other hand, microstructures of substrate consist of ferrite, fine $M_{23}C_6$ and coarse $M_7C_3$ that have 210Hv. Microstructures in the HAZ consist of fine $M_{23}C_6$ and coarse $M_7C_3$ like substrate. But, $M_{23}C_6$ increases and matrix was changed from ferrite to bainite that has hardness above 400Hv. Partial Melted Zone is formed between melting zone and HAZ. Partial Melted Zone near the melting zone consists of ${\gamma}$, $M_7C_3$ and martensite and Partial Melted Zone near the HAZ consists of eutectic phase around ${\gamma}$ and $M_7C_3$. Hardness is maximum 557Hv in the partial melted zone.

Quality Stability of a Softened, Sea Tangle Paste by Various Hydrocolloids during Storage (Hydrocolloid를 첨가한 연화 다시마 Paste의 품질 안정성)

  • Song Jae-Chul;Park Hyun-Jeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.246-253
    • /
    • 2004
  • This study was carried out to examine softening stability, exponent of Avrami equation, color change, sensory characteristcs during storage when hydrocolloid was added to the sea tangle paste treated with acetic acid and heat treatment. Rate constant of solidification showed the least value of 0.05 in Avrami equation. In addition hardness of the softened sea tangle paste was not changed after two days of storage in case of carrageenan. Rate of hardness in the softened sea tangle paste formulated with carrageenan exhibited the lowest value of 0.28 kg/mm/day. Heat melting spreadability of the softened sea tangle paste showed the highest value in case of carrageenan and its fluid behavior was rheopectic. Viscosity change in the sea tangle paste formulated with carrageenan was the least during storage and its significant difference at the level of p < 0.05 was exhibited. Change of L, a and b value of softened sea tangle formulated with carrageenan during storage was significantly different at level of p<0.05. Color preference, odor, cohesiveness, softerness, process compatibility and overall acceptance of softened sea tangle were revealed to be in best when carrageenan was added. When hydrocolloid was added to the softened sea tangle paste, it showed the positive result in quality and storage stability of softened sea tangle paste. It was extremely effective on softening stability when carrageenan was added to the softened sea tangle paste.