DOI QR코드

DOI QR Code

Effect of Freeze Drying Condition of WO3/Tert-Butyl Alcohol Slurry on the Microstructural Characteristics of Porous Body

WO3/tert-butyl alcohol 슬러리의 동결건조 조건이 다공체의 미세구조 특성에 미치는 영향

  • Lee, Eui Seon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Heo, Youn Ji (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Suk, Myung-Jin (Department of Materials Science and Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이의선 (서울과학기술대학교 신소재공학과) ;
  • 허연지 (서울과학기술대학교 신소재공학과) ;
  • 석명진 (강원대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2021.08.05
  • Accepted : 2021.08.13
  • Published : 2021.08.28

Abstract

The effects of drying temperature on the microstructure of porous W fabricated by the freeze-casting process of tert-butyl alcohol slurry with WO3 powder was investigated. Green bodies were hydrogen-reduced at 800℃ for 1 h and sintered at 1000℃ for 6 h. X-ray diffraction analysis revealed that WO3 powders were completely converted to W without any reaction phases by hydrogen reduction. The sintered body showed pores aligned in the direction of tert-butyl alcohol growth, and the porosity and pore size decreased as the amount of WO3 increased from 5 to 10vol%. As the drying temperature of the frozen body increased from -25℃ to -10℃, the pore size and thickness of the struts increased. The change in microstructural characteristics based on the amount of powder added and the drying temperature was explained by the growth behavior of the freezing agent and the degree of rearrangement of the solid powder during the solidification of the slurry.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1A2B5B01070587).

References

  1. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  2. P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  3. C. R. Cho, M. G. Kim, K. Y. Sohn and W.-W. Park: J. Korean Powder Metall. Inst., 24 (2017) 24. https://doi.org/10.4150/KPMI.2017.24.1.24
  4. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  5. M.-J. Suk and Y.-S. Kwon: J. Korean Powd er Metall. Inst., 8 (2001) 215.
  6. T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006
  7. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  8. S. Deville: Adv. Eng. Mater., 10 (2008) 155. https://doi.org/10.1002/adem.200700270
  9. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  10. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
  11. S.-T. Oh, G.-T. Lee, K.-J. Lee and M.-J. Suk: Korean J. Met. Mater., 52 (2014) 219. https://doi.org/10.3365/KJMM.2014.52.3.219
  12. R. Chen, C.-A. Wang, Y. Huang, L. Ma and W. Lin: J. Am. Ceram. Soc., 90 (2007) 3478. https://doi.org/10.1111/j.1551-2916.2007.01957.x
  13. W. Y. Kim, H. B. Ji, T. Y. Yang, S. Y. Yoon and H. C. Park: J. Korean Ceram. Soc., 47 (2010) 151. https://doi.org/10.4191/KCERS.2010.47.2.151
  14. E. S. Lee, Y. J. Heo, Y. T. Ko, J. G. Park, Y.-H. Choa and S.-T. Oh: J. Korean Powder Metall. Inst., 28 (2021) 216. https://doi.org/10.4150/KPMI.2021.28.3.216
  15. T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse: Metall. Trans. B, 7 (1976) 589. https://doi.org/10.1007/BF02698592
  16. D. R. Uhlmann, B. Chalmers and K. A. Jackson: J. Appl. Phys., 35 (1964) 2986. https://doi.org/10.1063/1.1713142
  17. T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Koto: J. Mater. Sci., 36 (2001) 2523. https://doi.org/10.1023/A:1017946518955