• 제목/요약/키워드: Solidification of Alloy

검색결과 369건 처리시간 0.028초

The effect of lanthanum on the solidification curve and microstructure of Al-Mg alloy during eutectic solidification

  • Xie, Shikun;Yi, Rongxi;Guo, Xiuyan;Pan, Xiaoliang;Xia, Xiang
    • Advances in materials Research
    • /
    • 제4권2호
    • /
    • pp.77-85
    • /
    • 2015
  • The influence of rare earth lanthanum (La) on solidification cooling range, microstructure of aluminum-magnesium (Al-Mg) alloy and mechanical properties were investigated. Five kinds of Al-Mg alloys with rare earth content of La (i.e., 0, 0.5, 1.0, 1.5 and 2.0 wt.%) were prepared. Samples were either slowly cooled in furnace or water cooled. Results indicate that the addition of the rare earth (RE) La can significantly influence the solidification range, the resultant microstructure, and tensile strength. RE La can extend the alloy solidification range, increase the solidification time, and also greatly improve the flow performance. The addition of La takes a metamorphism effect on Al-Mg alloy, resulting in that the finer the grain is obtained, the rounder the morphology becomes. RE La can significantly increase the mechanical properties for its metamorphism and reinforcement. When the La content is about 1.5 wt.%, the tensile strength of Al-Mg alloy reaches its maximum value of 314 MPa.

SOLIDIFICATION CRACKING SUSCEPTIBILITY OF

  • Yoon, Jong-Won
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.577-582
    • /
    • 2002
  • The solidification cracking susceptibilities of AI-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF

Solidification Cracking Susceptibility of Al-Mg-Si Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.42-46
    • /
    • 2002
  • The solidification cracking susceptibilities of Al-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF

Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

  • Zou, Jin;Zhai, Qi-Jie;Liu, Fang-Yu;Liu, Ke-Ming;Lu, De-Ping
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1275-1284
    • /
    • 2018
  • A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

AC2B 알루미늄 주조합금의 응고균열 강도에 미치는 금형 예열온도의 영향 (Effect of Mold Preheat Temperature on Solidification Crack Strength of AC2B Aluminum Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제34권5호
    • /
    • pp.162-169
    • /
    • 2014
  • The effect of the mold preheat temperature on the solidification crack strength was investigated in AC2B aluminum alloy. A tension type apparatus as part of a solidification crack test which could measure the stress-strain relationship quantitatively was utilized. The evaluation of the solidification crack strength with varying mold preheat temperatures was performed by the test procedure established in this research. When the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the solidification crack strengths were found to be $7.8Kgf/cm^2$, $12.9Kgf/cm^2$ and $28.6Kgf/cm^2$, respectively. In the same way, when the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the corresponding temperatures of the failure sites were $610^{\circ}C$, $600^{\circ}C$ and $571^{\circ}C$, and the calculated solid fractions were 14.0%, 29.3% and 50.8% when the specimens failed, respectively. The solidification crack strength increased in proportion to the solid fraction of the failure site. The solidification crack strength obtained in this test is assumed to reflect the effects of metallurgical factors on the thermo-plastic characteristics of a solidifying alloy such as the grain size of the solid, the grain morphology, and the distribution of solid grain.

Study on the Production of Aluminum Components by Direct Rheo Die Casting with Electromagnetic Stirrer

  • Roh, Joong-Suk;Heo, Min;Jin, Chul-Kyu;Park, Jin Ha;Kang, Chung-Gil
    • 한국산업융합학회 논문집
    • /
    • 제23권4_1호
    • /
    • pp.541-547
    • /
    • 2020
  • This paper relates a rheo die casting using electromagnetic force, which is one of the representative semi-solid methods for aluminum. The most important factors in electromagnetic stirring would be the melt temperature, sleeve temperature, electromagnetic force, and input time. The effect of the temperature of molten alloy on the direct rheo-casting is assessed in this study. The temperature of the molten alloy is set to 590 ℃ with a solidification of 40%, 600 ℃ with 30%, and 610℃ with less than 20%. Under the condition of 590 ℃ with a solidification of 40%, the whole molten alloy is solidified, causing non-forming during forming process. Meanwhile, under the condition of 600 ℃, where the solidification was 30%, appropriate amount of molten alloy is solidified, filled well into the mold, resulting in good forming, while at 610 ℃ with the solidification of 20%, the molten alloy is not sufficiently solidified and scattered away. The investigation of the defects inside the product with the help of the X-ray equipment shows that the electromagnetic stirring at 590 ℃ with a solidification of 30% produces many air-pores inside the product.

Al-Zn-Mg-Cu계 알루미늄 합금의 열간 균열 특성에 미치는 합금조성의 영향 (The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System)

  • 김지훈;조재섭;심우정;임항준
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.669-675
    • /
    • 2012
  • Hot tearing was the most significant casting defect when the castability evaluation of the Al-Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

Al-Mg계 합금과 Al-Si계 합금의 다이캐스팅 응고과정의 차이 (Difference in Solidification Process between Al-Mg Alloy and Al-Si Alloy in Die-Casting)

  • 최세원;김영찬;조재익;강창석;홍성길
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.82-85
    • /
    • 2012
  • The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.

AC2B 알루미늄 주조합금의 정량적 응고균열 강도 평가 (Quantitative Evaluation of Solidification Crack Strength of AC2B Aluminum Casting Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제34권4호
    • /
    • pp.136-142
    • /
    • 2014
  • Numerical solution of thermal stress by CAE analysis could be an effective method in product development stage of castings to predict and treat the problem of solidification cracking of castings. Quantitative stress-strain data are necessary, in this case. Tension type apparatus of a solidification crack test which can measure stress-strain relationship quantitatively was developed and the test procedure was established by this research. Solidification crack strength obtained from the following test procedure could be utilized to evaluate it in terms of effect factors on thermo-plastic characteristic of solidifying alloy such as grain size of solid, grain morphology, distribution of solid grain, etc. Proposed test procedure is as follow: Prediction of temperature at the failure site of solidification cracked specimen by computer simulation of solidification, Calculation of solid fraction of the failure site from thermodynamic solution of solidification under Scheil condition.

Fe-3%C-x%Cr-y%V-w%Mo-z%W 다합금계백주철의 주방상태 및 급냉조직 (As-Cast and Solidification Structures of Fe-3%C-x%Cr-y%V-w%Mo-z%W Multi- Component White Cast Irons)

  • Yu, sung-Kon;Shin, Sang-Woo
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.414-422
    • /
    • 2002
  • Three different multi-component white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their as-cast and solidification structures. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No.1), 3%C-10%V-5% Mo-5%W(alloy No. 2) and 3%C-17%Cr-3% V(alloy No.3). The as-cast microstructures were investigated with optical and scanning electron microscopes. There existed two different types of carbides, $M_7C_3$ carbide with rod-like morphology and $M_6C$ carbide with fishbone-like one, and matrix in the alloy No. 1. The alloy No. 2 consisted of MC carbide with chunky and flaky type and needle-like $M_2C$ carbide, and matrix. The chunky type referred to primary MC carbide and the flaky one to eutectic MC carbide. The morphology of the alloy No. 3 represented a typical hypo-eutectic high chromium white cast iron composed of rod-like $M_7C_3$ carbide which is very sensitive to heat flow direction and matrix. To clarify the solidification sequence, each iron(50g) was remelted at 1723K in an alumina crucible using a silicon carbide resistance furnace under argon atmosphere. The molten iron was cooled at the rate of 10K/min and quenched into water at several temperatures during thermal analysis. The solidification structures of the specimen were found to consist of austenite dendrite(${\gamma}$), $ ({\gamma}+ M_7C_3)$ eutectic and $({\gamma}+ M_6C)$ eutectic in the alloy No. 1, proeutectic MC, austenite dendrite(${\gamma}$), (${\gamma}$+MC) eutectic and $({\gamma}+ M_2C)$ eutectic in the alloy No. 2, and proeutectic $M_7C_3$ and $ ({\gamma}+ M_7C_3)$ eutectic in the alloy No 3. respectively.