• 제목/요약/키워드: Solidification mechanism

검색결과 77건 처리시간 0.029초

고강도 알루미늄합금 용접부의 고온균열 Mechanism (Mechanism of Hot Cracking in High Strength Al Welds)

  • 이창희;조성석
    • Journal of Welding and Joining
    • /
    • 제14권3호
    • /
    • pp.93-104
    • /
    • 1996
  • This study evaluated relative hot cracking susceptibility of commercial aluminum alloy welds, and then suggested possible mechanisms operated in the weld fusion zone and in the heat affected zone based on the observed cracking morphologies, fractography and microstructural features. The fusion zone solidification cracking was found to be mainly due to a microsegregation of Cu, Si, and Mg in grain boundaries, while liquation cracking in the HAZ was by the incipient melting of the segregated grain boundaries and the consitutional liquation of large aging precipitates and intermetallic compounds in the partially melted zone adjacent to the fusion line which experienced a rapid thermal excursion during welding.

  • PDF

알루미늄합금 용탕중의 산화개재물 형성 (Formation of Oxide Inclusions in the Molten Aluminium Alloys)

  • 임정호;김기배;윤우영;윤의박
    • 한국주조공학회지
    • /
    • 제18권5호
    • /
    • pp.439-449
    • /
    • 1998
  • Formation of oxide inclusions in the molten aluminium alloys during solidification is investigated. The oxidation tendency of both Al-4.5wt%Cu and Al-7wt%Si alloys is increased with melt temperature, particularly over $700^{\circ}C$. However, an Al-5wt%Mg alloy exhibits a decreasing mode over $800^{\circ}C$. The oxidation behavior with holding time shows the S curve shape for all of the alloys. It is shown that the mechanism of oxidation of Al-5wt%Mg alloy has a two step process different from that of Al-4.5wt%Cu and Al-7wt%Si alloys. The species and morphology of oxide inclusions in each alloy is also shown. The microstructure was more coarsened during solidification when the melt contains a large amount of oxide inclusion than when it doesn't. This result can be explained in terms of both the hindrance of heat extraction by oxide film formed on the aluminium melt and the difference of heat capacity between the aluminium melt and oxide inclusion during solidification.

  • PDF

Ti-B 첨가(添加)에 의한 Al 의 응고조직(凝固組織)에 관(關)한 연구(硏究) (The Effects of Ti-B Addition on the Unidirectional Solidification of Al)

  • 성연수;이계완
    • 한국주조공학회지
    • /
    • 제7권4호
    • /
    • pp.358-365
    • /
    • 1987
  • To investigate the grain refining mechanism of Al by the addition of Ti-B, the unidirectional solidifications of 99.9%Al and 99.7%Al were performed under the condition of varing the pouring temperature. The solidification modes of Al were studied by the cooling curve analyses, metallographic and microprobe examinations. The results were as follows: 1) Grains were most refined with an addition of 0.15wt.%Ti-0.021wt.%B but the grain size with 0.2wt.%Ti-0.028wt.%B was increased. 2) The grain size of 99.7wt.%Al was even more refined than that of 99.9wt.%Al with the same amount of Ti-B. 3) As the pouring temperature increased, the grain size of pure Al and an alloy with 0.lwt.%Ti-0.014wt.%B was increased. However, an alloy with 0.2wt.%Ti-0.028wt.%B did not show any effects of temperature. 4) TiC(Al-Ti) and (Al-Ti-C) were identified as nucleants for Al.

  • PDF

ESR공정분석 밑 해석 모델렁을 통한 최적 공정 선정 밑 제어에 대한 연구 (A Study on a control algorithm and determinant of an optimal process condition based upon ESR process analysis.)

  • 부광석;위철민;임태균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.352-352
    • /
    • 2000
  • ESR(ElectroSlag Remelting) Process is secondary fine process and melts steels by electric resistance heat and fines the melting steels by an appropriate solidification process parameters which affects the melting and solidification processes to get the high quality products. This paper describes a method to derive the mathematical model and analysis the dynamic characteristics for designing a controller of the ESR processes. The ESR process consists of a melting and solidificating processes and electrical system include the contact resistance mechanism. In this paper, we consider only the static relationship between inputs and outputs of the electric system because the dynamics of the electric system is so fast compared with the melting and solidificating processes which are analysed by using finite difference method. As the results, the fine processing in ESR is analysed and the process controller could be designed based on the process dynamic analysis.

  • PDF

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae;Cho, Young-Hee;Jung, Jae-Gil;Yoon, Woon-Ha;Lee, Young-Kook;Lee, Jung-Moo
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1376-1385
    • /
    • 2018
  • Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin;Li, Chunguang;Liu, Zhenzhong;Li, Yongmei;Meng, Shuo;He, Xinqi;Liu, Xinfeng;Wang, Wenji;He, Meijiao;Yang, Xiaolei;Liu, Qi;Liu, Longcheng
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3631-3640
    • /
    • 2022
  • Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.

Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

  • Li, Fangjie;Li, Huigai;Huang, Di;Zheng, Shaobo;You, Jinglin
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1394-1402
    • /
    • 2018
  • This study investigates the mechanism of MnS precipitation on $Al_2O_3-SiO_2$ inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized $Al_2O_3-SiO_2$ inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the $Al_2O_3$-rich regions of the $Al_2O_3-SiO_2$ inclusions; this can be explained by the high lattice disregistry between MnS and $Al_2O_3$.

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

용융형 전기방사법에 의한 폴리에스테르섬유의 방사거동과 구조에 관한 연구 (Study on Spinning Behavior and Structure of Polyester Fibers by the Melt-type Electrospinning Method)

  • Lee, Jin-Ah;Lim, Min-Soo;Joo, Chang-Whan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.273-276
    • /
    • 2002
  • The fiber formation of conventional melt spinning is extruded by forcing the polymer melt through a spinneret by pumping mechanism usually involving high pressure. This is followed by cooling, solidification and appropriate drawing of the fiber. The spinning process is broadly applicable to polyolefin, polyamide, polyester and indeed the whole range of fibers forming thermoplastic polymers. (omitted)

  • PDF

용융-응고법으로 제조된 Sm123 초전도체의 결정성장 기구 (The Grain Growth Mechanism of Sm123 Superconductor in Melt-Textured Growth Method)

  • 한상철;성태현;한영희;이준성;김상준
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.9-12
    • /
    • 2001
  • The microstructure evolution and the peritectic solidification of Sm$Ba_{2}$$Cu_{3}$ $O_{7-\delta}$ superconducting materials during the isothermal annealing were studied over the temperature range 1030-$1060^{\circ}C$ The faceted growth of the peritectic phase and its dependence upon Sm-diffusion in the liquid phase are discussed. A growth model is proposed to explain the growth shape of Sm123 crystals.

  • PDF