• Title/Summary/Keyword: Solid-state reaction method

Search Result 379, Processing Time 0.03 seconds

Magnetic Ordering in (1-x)BaTiO3-xLaFeO3 Solid Solutions

  • Rajagukguk, R.;Shin, D.G.;Lee, B.W.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.101-103
    • /
    • 2011
  • Solid solutions between $BaTiO_3$ and $LaFeO_3$ have been prepared through a solid state reaction method. The X-ray diffraction results reveal that $Ba_{1-x}La_xTi_{1-x}Fe_xO_3$ ($0.1\;{\leq}\;x\;{\leq}\;0.7$) compounds have a cubic structure, whereas the parent material $BaTiO_3$ has a tetragonal structure. The magnetization measurements indicate that the materials have a magnetic ordering at room temperature and the magnetic properties of the solid solutions depending on the doping amount of $LaFeO_3$. The origin of magnetic behaviors is believed to be from $Fe^{3+}$ ions.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

The Electronic Properties of the $BT-(BaNaK)(TiNb)O_3$ System for Lead Free PTC

  • Lee, Mi-Jae;Park, Jeong-Muk;Jeong, Yeong-Hun;Lee, U-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.12-12
    • /
    • 2009
  • We weal know that PbO was poisonous and prone to volatilize, then to pollute the circumstance and hurt to people, so we should dope other innocuous additives instead of lead to increase Tc of composite PTC material. In order to prepare lead-free $BaTiO_3$-based PTC with middle Curie point, the incorporation on $(BaNaK)(TiNb)O_3$ into $BaTiO_3$-based ceramics was investigated on samples containing 0.05, 0.07 and 0.1mol% of $(BaNaK)(TiNb)O_3$. $(BaNaK)(TiNb)O_3$ was compounded as standby material by conventional solid-state reaction technique. The starting materials were $Na_2O_3$,$K_2CO_3$, $BaCO_3$, $TiO_2$ and $Nb_2O_5$ powder, and using solid-state reaction method, too. The microstructure of samples were investigated by SEM, DSC, XRD and dielectric properties. Phase composition and lattice parameters were investigated by X-ray diffraction. Also, we are measure the resistivity of sintered bodies with calcinations condition.

  • PDF

Photoluminescence Properties of Red Phosphors Gd1-xVO4:Eux3+ Subjected to Eu3+ Concentration (Eu3+ 농도에 따른 적색 형광체 Gd1-xVO4:Eux3+의 형광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.193-197
    • /
    • 2012
  • $Gd_{1-x}VO_4:{Eu_x}^{3+}$ red phosphors were synthesized with changing the concentration of $Eu^{3+}$ ion by using a solid-state reaction method. The crystal structure, surface morphology, and photoluminescence and photoluminescence excitation properties of the red phosphors were measured by using X-ray diffractometer, field emission-scanning electron microscopy, and florescence spectrometer, respectively. The XRD results showed that the main peak of all the phosphor powders occurs at (200) plane. As for the photoluminescence properties, the maximum excitation spectrum occurred at 306 nm due to the charge transfer band from ${VO_4}^{3-}$ to $Eu^{3+}$ ions and the maximum emission spectrum was the red luminescence peaking at 619 nm when the concentration of $Eu^{3+}$ ion was 0.10 mol.

Synthesis and Emission Properties of CaMoO4:Tb3+ Green Phosphor Powders and Thin Films (CaMoO4:Tb3+ 녹색 형광체 분말과 박막의 제조와 발광 특성)

  • Jeon, Yongil;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.264-270
    • /
    • 2013
  • $CaMoO_4:Tb^{3+}$ green phosphor powders and thin films were successfully prepared by using the solid-state reaction method and the radio-frequency magnetron sputtering technique, respectively. The crystalline structure of all phosphor powders with different $Tb^{3+}$ ion concentrations was found to be a tetragonal system with the maximum diffraction intensity at $28.58^{\circ}$, while that of the phosphor thin films, irrespective of the type of substrate, was amorphous. As for the phosphor powders, the grain particles showed the chain-like patterns with inhomogeneous size distribution, the excitation spectra were composed of a broad band peaked at 307 nm and two small narrow bands centered at 381 and 492 nm, and the highest green emission spectrum was observed at 0.01 mol of $Tb^{3+}$ ions. As for the phosphor thin films, the average transmittance exceeding 85% was measured in the 400~1,100 nm range and the optical band gap showed a significant dependence on the type of substrate.

Crystal Growth for the Research Purpose (연구용 결정 성장)

  • Hur, Nam-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.108-115
    • /
    • 2011
  • Principles in the synthesis of small-sized high-quality crystals for the experimental condensed matter physics will be discussed in this paper. Synthesis process and cautions will be introduced especially for the synthesis methods which can be easily accessible to researchers. Starting from the solid state reaction which is the most common synthesis method, I will explain the quartz tube sealing that is crucial for making polycrystalline materials as well as single crystals in various conditions. Finally, basics of single crystal growth and various techniques will be introduced on the whole for the researchers who are not familiar with the material synthesis.

Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation (Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성)

  • 이병우;김세호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

Effect of $Mg^{2+}$ co-doping on luminescent properties of $ZnGa_2O_4:Mn^{2+}$

  • Singh, Binod Kumar;Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.29-32
    • /
    • 2007
  • Zinc gallate, $ZnGa_2O_4:Mn^{2+}$ co-doped with different concentrations of $Mg^{2+}$ (0.001- 0.5 mol%) was prepared by solid state synthesis method. These compositions were investigated for their photoluminescence and cathodoluminescence properties. The optimized composition $Zn_{0.990}Mg_{0.005}Ga_2O_4:Mn_{0.005}$ shows higher luminescence intensity compared to the parent phosphor. The intense green emission peak was found at 504 nm. The $Mg^{2+}$ doping does not affect much the decay time. It remains <10 ms for these compositions which make them potential candidate for application in TV screens.

  • PDF

Electrochemical Performance of Lithium Iron Phosphate by Adding Graphite Nanofiber for Lithium Ion Batteries

  • Wang, Wan Lin;Jin, En Mei;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.121-124
    • /
    • 2012
  • Olivine type $LiFePO_4$ cathode material was synthesized by solid-state reaction method including one-step heat treatment. To improve the electrochemical characteristics, graphite nanofiber (GNF) was added into $LiFePO_4$ cathode material. The structure and morphological performance of $LiFePO_4$ were investigated by X-ray diffraction (XRD); and a field emission-scanning electron microscope (FE-SEM). The synthesized $LiFePO_4$ has an olivine structure with no impurity, and the average particle size of $LiFePO_4$ is about 200~300 nm. With graphite nanofiber added, the discharge capacity increased from 113.43 mAh/g to 155.63 mAh/g at a current density of 0.1 $mA/cm^2$. The resistance was also significantly decreased by the added graphite nanofiber.

Hydrothermal synthesis and photoluminescence properties of nanocrystalline $GdBO_3:Eu^{3+}$ phosphor

  • Kim, Tae-Hyung;Kang, Shin-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.717-720
    • /
    • 2005
  • Nanocrystalline $GdBO_3:Eu^{3+}$ was prepared by a hydrothermal method. The as-synthesized powders were spherical shaped agglomerates of nano particles. The luminescent properties were compared with samples synthesized by conventional solid-state reaction method. Both the photoluminescence intensity and chromaticity were improved and a red-shift in the CT band was observed for the hydrothermally synthesized samples.

  • PDF