• Title/Summary/Keyword: Solid-phase microextraction

Search Result 201, Processing Time 0.026 seconds

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

Characteristics of trace analysis of potential diesel oxygenates using the factorial design in solid-phase microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 요인배치법을 이용한 디젤첨가제의 미량분석의 특성 평가)

  • Park, Jae-Sang;Chang, Soon-Woong
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.370-382
    • /
    • 2007
  • In this study, solid-phase microextraction (SPME) technique using GC/FID was studied as a possible alternative to liquid-liquid extraction for the analysis of EGBE, DGBE, DBM and TGME in water, and an optimization condition of trace analysis of EGBE, DGBE, DBM and TGME using the factorial design was described. Experiments used a fractional factorial design method followed by central composite design allowing optimization of a number of factors as well as statical analysis of results. The response surface analysis showed that the extraction efficiency can be described by a second-order polynomial equation in which the salts concentration, extraction temperature, extraction time and sonication time are the major influences. Using DOE, a new data-dependent method was developed that improved the quantity of confidently analyzed EGBE, DGBE, DBM and TGME in water samples.

Effect of Stewing Time on the Small Molecular Metabolites, Free Fatty Acids, and Volatile Flavor Compounds in Chicken Broth

  • Rong Jia;Yucai Yang;Guozhou Liao;Yuan Yang;Dahai Gu;Guiying Wang
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.651-661
    • /
    • 2024
  • Chicken broth has a taste of umami, and the stewing time has an important effect on the quality of chicken broth, but there are fewer studies on the control of the stewing time. Based on this, the study was conducted to analyze the effects of different stewing times on the sensory, small molecular metabolites, free fatty acids, and volatile flavor compounds contents in chicken broths by liquid chromatography-quadrupole/time-of-flight mass spectrometry, gas chromatography-mass spectrometry, headspace solid-phase microextraction, and gas chromatography-mass spectrometry. Eighty-nine small molecular metabolites, 15 free fatty acids, and 86 volatile flavor compounds were detected. Palmitic and stearic acids were the more abundant fatty acids, and aldehydes were the main volatile flavor compounds. The study found that chicken broth had the best sensory evaluation, the highest content of taste components, and the richest content of volatile flavor components when the stewing time was 2.5 h. This study investigated the effect of stewing time on the quality of chicken broth to provide scientific and theoretical guidance for developing and utilizing local chicken.

Volatile Flavor Compounds of Olive Flounder (Paralichthys olivaceus) Fed Diets Supplemented with Yuza (Citrus junos Sieb ex Tanaka) (유자 첨가 사료로 사용된 넙치의 휘발성 향미 성분)

  • Kim, Heung-Yun;Shin, Tai-Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.224-231
    • /
    • 2009
  • Volatile components in Olive Flounder fed diets containing 0, 2,5, 5.0, and 7.5% yuza (Citrus junas Sieb ex Tanaka) for 4 months were investigated. Samples were extracted by solid-phase micro extraction and analyzed by gas chromatography/mass spectrometry. Among 89 compounds detected, 82 were positively identified. Volatile compounds of Olive Flounder fed the unsupplemented diet comprised 12 acids, 10 alcohols, eight aldehydes, five aromatic compounds, nine esters, 12 hydrocarbons, four ketones, two monoterpenes, and one miscellaneous compound. Compounds identified in Olive Flounder fed the yuza-supplemented diets consisted of 10 esters, 11 monoterpenes, 13 sesquiterpenes, and two miscellaneous compounds, with the other compounds being the same as in the control. The most abundant class of compounds in flounders fed the yuza-supplemented diet was the monoterpenes, which included limonene, $\beta$-terpinene, $\beta$-trans-ocimene, and $\alpha$-terpinolene. Of the 13 sesquiterpenes identified in flounder fed the yuza-supplemented diet, bicyclogermacrene was the major volatile compound followed by allo-aromadendrene, trans-caryophyllene, and $\delta$-cadinene. Bicyclogermacrene and germacrene D content increased significantly as the yuza supplementation increased.

Analysis of Volatile Compounds in Bamboo and Wood Crude Vinegars by the Solid-Phase Microextracion(SPME) Method (SPME법에 의한 죽초 및 목초액 중의 휘발성 성분 분석)

  • Mun, Sung-Phil;Ku, Chang-Sub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.80-86
    • /
    • 2002
  • Volatile compounds in three different kinds of crude vinegars obtained from oak (Quercus serrata), bamboo (phyllostachys) and pine (Pinus densiflora) species were analyzed by the solid-phase microextraction (SPME) method. A total of 264 peaks were detected on the chromatograms obtained from the polar (CBP 20) and the nonpolar (CBP 1) columns, which were used for analyzing the volatile compounds in these vinegars. The major volatile compounds identified by using the polar column were 2-butanone, acetic acid, guaiacol, phenol, cresols, 4-ethyl guaiacol, 4-ethyl phenol, and syringol. Using the nonpolar column, seven compounds could be identified: 1,2-dimethoxybenzyl alcohol, 1-hydroxy-2-butanone, 1-(2-furanyl)-1-propane, ethisolide, furfuryl acetate, 1,2-dimethoxybenzene, phenyl acetate. The volatile compounds were classified into five groups: phenols, neutral compounds, organic acids, esters and others. The phenols were the main component and comprised 49~65% of the volatile compounds of these vinegars. In the case of bamboo vinegar, the proportion of the phenols in the volatile compounds was lower than that of the two wood vinegars. However, the proportions of the neutral compounds and the organic acids were higher than those of the wood vinegars. Therefore, it seems that these differences of the proportions of the volatile compounds would make a certain difference of a smoke flavor between the bamboo vinegar and the wood vinegars.

Development of an analytical method of organochlorine pesticides in human bloods using head space-solid phase microextraction coupled with gas chromatography/mass spectrometry (HS SPME-GC/MS를 이용한 혈액 중 유기염소계 농약의 분석법 개발)

  • Kang, Tae-Woo;Pyo, Hee-Soo;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.259-271
    • /
    • 2008
  • The analytical method of extracting compounds from human blood to examine accumulated organochlorine pesticides (OCPs) has been widely used the traditional liquid-liquid extraction (LLE) method and solid-phase extraction (SPE) method, yet these methods have certain limitations in purification and usafe of a large amount of sample. In order to overcome the se problems reside in these, solid-phase microextraction (SPME), known as a highly efficient extration method with less samples and relatively simple, was employed to collect 18 different kinds of OCPs in blood as extraction method in this study. To optimize extraction method, we examine various experimental SPME-parameters such as adsorption (fiber type, adsorption time, adsorption temperature, salting out effect), and desorption (desorption time, desorption temperature etc.). From the experimental results, the optimal conditions are as follows: fiber was polyacrylate with $85{\mu}m$, adsorption time was for 5 min, adsorption optimum temperature was at $280^{\circ}C$, and salting out effect was NaCl with 0.1 g. MDL, precision and accuracy was in the ranges of 0.05~0.20 ng/mL, 5.59~13.39%, respedively, and accuracy was -0.5% ~24.5% for all OCPs.

Application of Solid Phase Microextraction to the Analysis of Pesticides in Vegetables

  • Cho Tae-Hee;Kang Hee-Gon;Kim Tae-Rang;Chang Min-Su
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2001.10a
    • /
    • pp.171-174
    • /
    • 2001
  • Solid phase micro-extraction (SPME), a solvent-free, rapid and inexpensive method for the extraction of organic compounds from aqueous sample matrices, was evaluated for determination of the 120 pesticides in vegetables such as crown daisy, perilla leaf, leafy lettuce and to mato. The analysis conditions were chosen for the SPME method: 15 min of immersion of the PDMS fiber in 10 ml of the solution with stirring at 1,000 rpm. The recovery tests were carried out in triplicate. The range of recoveries was 0-142% for organochlorine pesticides and $4.9\sim200\%$ for organophosphorus pesticides. The recoveries were very low in the pesticide groups with low solubility in water. The recoveries became lower in proportion to the interference materials in vegetables. The recovery in tomato was relatively higher than that in perilla Ie af and crown daisy. The recovery values obtained by SPE and SPME were compared. In leaf y lettuce, recovery obtained by SPE method ranged from $58.1\%\;to\;136.1\%$ and recovery by SPME ranged from $9.6\%\;to\;176.3\%$ In organophosphorus pesticides. The recovery in SPME method was satisfactory with $136\%$ for ethoprophos, $119\%$ for methidathion and $113\%$ for diazinon. Meanwhile, recovery of EPN, phenthoate and 2,4-DDT revealed relatively low value of $38\%,\;41\%\;and\;3.4\%,$ respectively. However, most of pesticides applied to SPME method sho wed constant recovery and precision. From these results, it can be concluded that solid phase micro-extraction might be an appropriate method for the screening test of pesticides in vegetables.

  • PDF

Dietary Intake and Venous Blood Concentration of Polycyclic Aromatic Hydrocarbons in Low-level Exposure (다환방향족탄화수소류의 음식물을 통한 섭취량과 혈중농도)

  • Moon, Chan-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.386-392
    • /
    • 2012
  • Objectives: This study aims to evaluate the blood concentrations and dietary intake for 24-hour food duplicate of low level polycyclic aromatic hydrocarbons (PAHs). Design: The geometric means of the blood concentrations and dietary intake of 16 PAHs in college student candidates were simply compared with instrumental detection. Methods: The concentrations of 16 PAHs in venous blood and 24-hour food duplicates were analyzed with head-space solid phase microextraction (HS-SPME) of gas chromatography-mass spectrometry. Results: Naphthalene, acenaphthylene, pyrene, benz(a)anthracene, chrysene, and acenaphthene among the 16 analyzed PAHs were simultaneously detected both in venous blood and 24-hour food duplicate samples. Conclusion: The main exposure source of the six PAHs is thought to be oral intake from food through low level non-occupational exposure.

Chemical and Volatile Characterization of Structured Lipid from Soybean Oil Containing Conjugated Linoleic Acid

  • Lee, Jeung-Hee;Lee, Jong-Ho;Lee, Ki-Teak
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.219-224
    • /
    • 2003
  • Structured lipid (SL) produced from soybean oil was enriched with conjugated linoleic acid (CLA). The SL had 21.9 mol % CLA isomers incorporated into SL-soybean after the 24-h reaction. Removal of tocopherols (73~84% loss from original soybean oil) was observed in the SL. Electronic nose can discriminate the aroma of SL-soybean from that of soybean oil. Many oxidative volatiles including pentenal, octenal, 2,4-decandienal, and nonenal were found in SL-soybean. Electronic nose, which is valuable for composite aroma analysis, can provide flavor information together with GC-MS that is useful for qualitative or quantitative analysis of each odor compound in SL.

Analysis of $C_4$-$C_{l2}$ Ozone precursors using SPME in ambient air (SPME를 이용한 대기중 $C_4$-$C_{l2}$ 오존전구물질 VOC분석)

  • 허귀석;유연미;이재환;이진홍
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.217-218
    • /
    • 2002
  • 대기환경 중의 오존은 유기용제의 사용 및 차량에서 배출되는 휘발성 방향족 화합물과 오존전구물질(ozone precursors)이 대기 중에서 광화학반응을 통하여 만들어지는 것으로 알려져 있다. 오존은 호흡기계통의 기관지염 및 감기, 현기증과 같은 인체의 건강상에도 매우 나쁜 영향을 초래하고 있어 이에 대한 모니터링이 중요한 과제로 대두되고 있다. 본 연구에서는 고가의 장비가 소요되는 기존의 분석법인 저온농축법과 흡착법을 이용하는 대신에 고체상 미량추출방법 (Solid-Phase Microextraction, 이하 SPME)을 이용하여 GC/MS로 대기 중 오존 VOC를 ppt 수준까지 빠르고 신속하게 분석하는 방법을 확립하였다. (중략)

  • PDF