• Title/Summary/Keyword: Solid-liquid Separation

Search Result 226, Processing Time 0.025 seconds

Reducing Technique for Nitrogen and Phosphorus in Piggery Slurry by the Thermophilic Aerobic Oxidation(TAO) System (급속액상부숙기술(TAO system)을 이용한 가축분뇨 슬러리의 질소.인 저감기술)

  • 이원일;이명규
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.185-190
    • /
    • 2000
  • TAO system and solid-liquid separation (28mesh filter and 200mesh filter) were applied in processing piggery slurry to see the reduction of N and P and to draw the efficiency in reducing manure application area. The results are as follows; 1. The amount of N and P in slurry of $4.6m^3/day$ was 22.5kg/day ($4,893mg/{\ell}$) and 7.32kg/day ($1,592mg/{\ell}$). 2. Reduction rate of N and P by TAO reactor was 9.9 kg/day (46.0%) and 3.47kg/day(34.0%). 3. Reduction rate of N and P by Solid-liquid separation was 10.5kg/day (46.6%) and 5.12kg/day (69.8%). 4. One the basis of the amount of nitrogen composting, the square size of liquid manure sprinkled area was reduced from 74.6ha/y to 39.0ha/y in rice paddy, and from 63.2ha/y to 33.0ha/y by the treatment.

  • PDF

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

폴리프로필렌 중공사막의 용융방사

  • 김진호;강민수;김성수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.75-76
    • /
    • 1996
  • 다공성 고분자 분리막을 제조하는 방법으로 기존의 용매교환법을 대신하여 내용매성, 내약품성 및 내열성이 매우 뛰어난 고분자를 소재로하여 다공성 고분자막을 만드는 열유도 상분리법(Thermally Induced Phase Separation, TIPS)이 개발되었다. TIPS공정에서는 주로 고분자/희석제 system의 열역학적인 불안정성에 의하여 polymer-rich phase와 polymer-lean phase로 상이 분리되는 liquid-liquid phase separation과 결정성 고분자의 결정화에 의한 solid-liquid phase separation을 주로 상분리 mechanism으로 사용하고 있다. 따라서 위에 언급된 TIPS 이론에 근거한 melt spinning 공정에 의하여 PP 중공사막을 제조하였는데 wet spinning 공정에 의한 용매 교환법에 비해 비교적 공정이 단순하고 다공도를 조건하기가 용이하며 구조 및 성능면에서도 높은 재현성을 가지고 있다. 또한 우수한 소재임에도 불구하고 절절한 용매의 부재로 용매교환법에서 사용할 수 없었던 폴리올레핀계, 나일론계, 방향족출합계 고분자를 사용할 수 있게 되어 소재의 폭이 넓어졌다는데에 가장 큰 장점이 있다. 본 연구에서는 PP중공사막을 제조하기 위하여 먼저 용융 방사장치를 제작하였고 melt spinning 공정에 의해 막을 제조하는데 적합한 방사조건들을 확립한 후 결정된 방사조건에 의해 얻어진 PP 중공사막의 구조 및 성능에 영향을 미치는 인자들에 관하여 조사하였다.

  • PDF

Performances of Anaerobic Sequencing Batch Reactor for Digestion of Municipal Sludge at the Conditions of Critical Solid-liquid Separation (혐기성 연속 회분식 공정에 의한 도시하수슬러지 소화시 고액분리 특성에 따른 처리효율평가)

  • Hur, Joon-Moo;Park, Jong-An
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.77-85
    • /
    • 2002
  • The objective of this study was to evaluate the performances of the ASBR under critical conditions of solid-liquid separation, caused by extremely high solids concentration, for wider application of the ASBR to various wastes. The ASBRs and completely-mixed daily-fed control runs were operated using a municipal mixed sludge at 35$^{\circ}C$ and 55$^{\circ}C$. Conversion of completely-mixed daily-fed reactor to sequencing batch mode and changes in HRT of all ASBRs were easily achieved without adverse effect, regardless of digestion temperature. Solids accumulation was remarkable in the ASBRs, and directly affected by settleable solids concentration of the feed sludge. Noticeable difference in solids-liquid separation was that flotation thickening occurred in the mesophilic ASBRs, while gravity thickening was a predominant solid-liquid separation process in the thermophilic ASBRS. Solids profiles at the end of thickening step dramatically changed at solid-liquid interface, and slight difference in solids concentrations was observed within thickened sludge bed. Organics removals based on subnatant or supernatant after thickening always exceeded 80% in all reactors. Thickened sludge volume and gas production of the ASBRs affected mutually. Gas production increased as thickened sludge accumulated, and continuous gas evolution during thickening could cause thickened sludge to expand or resuspend. Thickened sludge volume exceeding a predetermined withdrawal level resulted in loss of organic solids as well as biomass during withdrawal step, leading to decrease in gas production ind SRT. Such an adverse mutual effect was significant in gravity thickening, while it was not sensitive in flotation thickening. Changes in organic loading had no significant effect on organic removals and gas production after build-up of solids in the ASBRs.

Influences of Membrane Fouling on Water Permeability of Hollow Fiber Microfiltration Membrane (막오염현상이 중공사정밀여과막의 물투과특성에 미치는 영향)

  • Kim, Boo-Gil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.92-99
    • /
    • 1996
  • The effects of membrane fouling on the water permeability were examined using the hollow fiber microfiltration (HMF)membrane. A membrane module with a pore size of 0.1 micron was submerged in the permeation tank and water bath. The applied pressure was 12.4 kPa for direct solid-liquid separation of activated sludge. As the concentration of MLSS(880~2180mg/l) of the feed solution increased, the decreasing rates of the water flux increased and the membrane was clogged more rapidly. The water flux through the membrane did not increase effectively even with the increase in the applied pressure(40.0~93.3kPa). When the membrane was cleaned with water, the recovery rate of water flux were larger for lower applied pressure. The results indicated that the process of direct solid-liquid separation using HMF membrane was effective at lower pressure.

  • PDF

ENHANCED REMOVAL OF RESIDUAL ALUMINUM AND TURBIDITY IN TREATED WATER USING POLYMERS

  • Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • This study investigated the possibility of reducing the residual aluminum (Al) in the treated water using polymers. Two raw waters (lake and river water) and three kinds of polymers (coagulant, flocculant, and filtration aids) were used for this purpose. This study found that coagulation at the high dose did not necessarily lead to the high concentration of the residual Al in the treated water. The coagulation efficacy was found more important in determining the residual Al than the coagulant dose. The use of a polymer enhanced the removal of turbidity as well as the residual Al. The coagulant aid removed the dissolved Al as well as the particulate Al by helping the coagulation and the solid-liquid separation. The flocculant aid and the filtration aid preferentially removed the particulate Al while helping the solid-liquid separation. The filtration aid reduced the residual Al substantially more effectively than the flocculant aid. The polyamine-based coagulant aid (FL) showed the better performance in reducing the residual Al and turbidity than DADMAC (WT). The cationic flocculant aid with weak charge density and the medium molecular weight (SC-020) showed the best performance in reducing the residual Al.

Residence Time Distribution in the Chromatographic Column: Applications in the Separation Engineering of DNA

  • Park, Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid -liquid systems, for example, from chromatography Showing how the column efficiency is improved by the use of a n electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements. which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.

Structural Analysis of TPU Membrane Plate in Multi-purpose Module for Solid-liquid Separation (TPU 재질을 적용한 다목적 고액분리 모듈의 여과판 구조해석)

  • Jung, Hee Suk;Oh, Doo Young;Ko, Dong Shin;Song, Hyoung Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Polypropylene is the main existing material in the domestic market being used for the filter plate because of its moldability, low cost, and commercial availability. Polypropylene filter plate once distorted due to the high-pressure during operation may cause the problem in the continuous operation of the solid-liquid separation module. Thermoplastic Poly Urethane (TPU) can be a high-performance alternative material for the filter plate in the solid-liquid separation module of the dehydration process. Hence, to predict and evaluate the TPU for structural stability in the filter plate through analytical techniques designed and experimental verification is essential. As a result, TPU filter plate had maximum strain of 27.85 MPa at 20 bar pressure condition. This result is less than TPU stress-strain limit, which ensures the structural stability of the TPU material.

Design for a Low-Pressure Hydrocyclone with Application for Fecal Solid Removal Using Polystyrene Particles

  • Lee, Jin-Hwan;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.3
    • /
    • pp.180-188
    • /
    • 2005
  • The separation performances for thirty different dimensions of a low-pressure hydrocyclone (LPH) were tested in order to obtain an optimum dimension scale for fecal solid removal from an aquaculture system. The geometric variables were considered on two inlet diameters (Di: 30 and 50 mm), five overflow diameters (Do: 30, 50, 60, 70 and 100 mm), and three cylinder lengths (Lc: 250, 345 and 442 mm), while the cylinder diameter (Dc) of 335 mm, underflow diameter (Du) of 50 mm and cone angle (${\theta}$) of $68^{\circ}$ were kept constant. A small size for carp feces was regarded as the target for the removal of solids. Spherical polystyrene particles (1.1-1.3 mm dia., ${\rho}_s=1.05g/cm^3$), which demonstrate a similar settling velocity and specific gravity to the carp feces, were used as feed. The separation performance was tested in the range of 330 to 1200 ml/s of the inflow rate. Experimental results using ANCOVA and the Tukey test (${\alpha}=0.05$) demonstrated that the separation performances of LPH were significantly affected (P<0.05) by fi, Di and Do. In contrast, there was no significant Lc effect (P>0.05) on the separation performances. The maximum separation performance was detected at dimension combinations of 30 mm of inflow diameter (Di), 50, 60 and 70 mm of overflow diameter (Do), 345 mm of cylinder length (Lc). The dimension proportions were 0.09, 1.03, 0.15-0.21 and 0.15 (or Di/Dc, Lc/Dc, Do/Dc and Du/Dc, respectively.