• Title/Summary/Keyword: Solid-electrolyte interface

Search Result 76, Processing Time 0.023 seconds

Electrical Conductance and Electrode Reaction of $RbAg_4I_5$ Single Crystals (고체전해질 $RbAg_4I_5$ 단결정의 전기전도성과 전극반응)

  • Jong Hee Park;Woon-Kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 1980
  • The electrical conductivity of solid electrolyte $RbAg_4I_5$ single crystal was studied at various temperatures. The four-probe method was used in measuring the conductance with an ac signal imposed on the specimen. The ionic conductivity was $0.284 ohm^{-1} cm^{-1}\;at\;25^{\circ}C$, and the activation energy for $Ag^+$ ion migration was calulated to be 1.70 kcal/mole. These values agree well with those reported for polycrystalline samples. Reactions at $Ag/RbAg_4I_5$ interface were studied by cyclic voltammetry with a silver reference electrode. It was found that silver ion is reversibly reduced at silver surfaces below zero volt, and iodide was oxidized above +0.67 volt.The anodic current arising from the oxidation of the electrode was small in magnitude initially over a wide range of potential, but, after silver was cathodically deposited on the electrode, reversing the potential sweep to the anodic direction resulted in a sharp peak of anodic current.

  • PDF

Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries (리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성)

  • Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.

Granulations of SiOx Nanoparticles to Improve Electrochemical Properties as a Li-Ion Battery's Anode (리튬이온전지 음극용 SiOx 나노입자의 조대화를 통한 전기화학 특성 향상)

  • Lee, Bora;Lee, Jae Young;Jang, Boyun;Kim, Joonsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2019
  • $SiO_x$ nanoparticles were granulated, and their microstructures and effects on electrochemical behaviors were investigated. In spite of the promising electrochemical performance of $SiO_x$, nanoparticles have limitations such as high surface area, low density, and difficulty in handling during slurry processing. Granulation can be one solution. In this study, pelletizing and annealing were conducted to create particles with sizes of several decades of micron. Decrease in surface area directly influences the initial charge and discharge process when granules are applied as anode materials for Li-ion batteries. Lower surface area is key to decreasing the amount of irreversible phase-formation, such as $Li_2Si_2O_5$, $Li_2SiO_3$ and $Li_4SiO_4$, as well as forming the solid electrolyte interface. Additionally, aggregation of nanoparticles is required to obtain further enhancement of the electrochemical behavior due to restrictions that there be no $Li_4SiO_4$-related reaction during the first discharge process.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Effect of Lithium Ion Concentration on Electrochemical Properties of BF3LiMA-based Self-doping Gel Polymer Electrolytes (BF3LiMA기반 자기-도핑형 겔 고분자 전해질의 전기화학적 특성에 미치는 리튬이온 농도의 영향)

  • Kang, Wan-Chul;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • Boron trifluoride lithium methacrylate ($BF_3$LiMA)-based gel polymer electrolytes (GPEs) were synthesized with various $BF_3$LiMA concentration to elucidate the effect on ionic conductivity and electrochemical stability by a AC impedance and linear sweep voltammetry (LSV). As a result, the highest ionic conductivity reached $5.3{\times}10^{-4}Scm^{-1}$ at $25^{\circ}C$ was obtained for 4 wt% of $BF_3$LiMA. Furthermore, high electrochemical stability up to 4.3 V of the $BF_3$LiMA-based GPE was observed in LSV measurement since the counter anion was immobilized in this self-doped system. On the other hand, it was assumed that there was a rapid decomposition of electrolytes on a lithium metal electrode which results in a high solid electrolyte interface (SEI) resistance. However, a high stability toward graphite or lithium cobalt oxide (LCO) electrode thereby a low SEI resistance was observed from the AC impedance measurement as a function of storage time at $25^{\circ}C$. Consequently, the high ionic conductivity, good electrochemical stability and the good interfacial compatibility with graphite and LCO were achieved in $BF_3$LiMA-based GPE.

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.