• 제목/요약/키워드: Solid-electrolyte

검색결과 702건 처리시간 0.025초

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries

  • Shin, Ran-Hee;Son, Sam-Ick;Lee, Sung-Min;Han, Yoon Soo;Kim, Yong Do;Ryu, Sung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.712-718
    • /
    • 2016
  • In this study, we investigate the effect of the$Li_3BO_3$ additive on the densification and ionic conductivity of garnet-type $Li_7La_3Zr_2O_{12}$ solid electrolytes for all-solid-state lithium batteries. We analyze their densification behavior with the addition of $Li_3BO_3$ in the range of 2-10 wt.% by dilatometer measurements and isothermal sintering. Dilatometry analysis reveals that the sintering of $Li_7La_3Zr_2O_{12}-Li_3BO_3$ composites is characterized by two stages, resulting in two peaks, which show a significant dependence on the $Li_3BO_3$ additive content, in the shrinkage rate curves. Sintered density and total ion conductivity of the system increases with increasing $Li_3BO_3$ content. After sintering at $1100^{\circ}C$ for 8 h, the $Li_7La_3Zr_2O_{12}-8$ wt.% $Li_3BO_3$ composite shows a total ionic conductivity of $1.61{\times}10^{-5}Scm^{-1}$, while that of the pure $Li_7La_3Zr_2O_{12}$ is only $5.98{\times}10^{-6}Scm^{-1}$.

비정질 V2O5 중간층 삽입을 통한 고성능 LNMO기반 박막 배터리 개발 (Development of High-Performance LNMO Based Thin-Film Battery through Amorphous V2O5 Interlayer Insertion)

  • 권오혁;김종헌;박준섭;김현석
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.194-198
    • /
    • 2022
  • All-solid-state thin-film battery can realize the integration of electronic circuits into small devices. However, a high voltage cathode material is required to compensate for the low energy density. Therefore, it is necessary to study all-solid-state thin-film battery based on the high voltage cathode material LNMO. Nevertheless, the electrochemical properties deteriorate due to the problem of the interface between LiNi0.5Mn1.5O4 (LNMO) and the solid electrolyte LiPON. In this study, to solve this problem, amorphous V2O5 was deposited as an interlayer between LNMO and LiPON. We confirmed the possibility of improving cycle performance of LNMO based thin-film battery. We expect that the results of this study can extend the battery lifespan of small devices using LNMO based all-solid-state thin-film battery.

고온 수전해에 의한 수소 제조 기술 (Hydrogen Production Technology using High Temperature Electrolysis)

  • 홍현선;추수태;윤용승
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.335-347
    • /
    • 2003
  • High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

Application of Composites Composed of Phosphoric Acid-Doped Silica Gel and Styrene-Ethylene-Butylene-Styrene Elastomer to Electric Double-Layer Capacitors

  • Matsuda, Atsunori;Honjo, Hiroshi;Hirata, Kazuki;Tatsumisago, Masahiro;Minami, Tsutomu
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.353-356
    • /
    • 1999
  • Highly proten-conductive elastic composites have been successfully prepared from $H_3PO_4$-doped silica gel and styrene-ethylene-butylene-styrene block elastic copolymer. In addition solid state electric double-layer capacitors have been fabricated using the composite as an electrolyte and activated carbon powders(ACP) hybridized with the composite as a polrizable electrode. The cyclic voltammogram of the electric double-layer capacitor fabricated demonstrated that electric charge was stored in the elecric double-layer at the interface between the polarizable electrode and the electrolyte. The value of capacitance of the capacitor was 10 F/(gram of total ACP), which was comparable to that of the capacitors using conventional liquid electrolytes.

  • PDF

고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구 (A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell)

  • 김응용;송락현;전광선;신동열;강대갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries

  • Choi, Hyun;Nguyen, Cao Cuong;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2519-2526
    • /
    • 2010
  • Silane-based self-assembly was employed for the surface modification of carbon-coated Si electrodes and their surface chemistry and electrochemical performance in battery electrolyte depending on the molecular structure of silanes was studied. IR spectroscopic analyses revealed that siloxane formed from silane-based self-assembly possessed Si-O-Si network on the electrode surface and high surface coverage siloxane induced the formation of a stable solid-electrolyte interphase (SEI) layer that was mainly composed of organic compounds with alkyl and carboxylate metal salt functionalities, and PF-containing inorganic species. Scanning electron microscopy imaging showed that particle cracking were effectively reduced on the carbon-coated Si when having high coverage siloxane and thickened SEI layer, delivering > 1480 mAh/g over 200 cycles with enhanced capacity retention 74% of the maximum discharge capacity, in contrast to a rapid capacity fade with low coverage siloxane.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Effect of a Series Connection of a Bi-Electrolyte Hydrogen Sensor in a Leak Detector

  • Han, Hyeuk Jin;Park, Chong Ook;Hong, Youngkyu;Kim, Jong Suk;Yang, Jeong Woo;Kim, Yoon Seo
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.6-9
    • /
    • 2015
  • Conventional leak detectors are widely based on helium gas sensors. However, the usage of hydrogen sensors in leak detectors has increased because of the high prices of helium leak detectors and the dearth in the supply of helium gas. In this study, a hydrogen leak detector was developed using solid-state hydrogen sensors. The hydrogen sensors are based on Park-Rapp probes with heterojunctions made by oxygen-ion conducting Yttria-stabilized zirconia and proton-conducting In-doped $CaZrO_3$. The hydrogen sensors were used for determining the potential difference between air and air balanced 5 ppm of $H_2$. Even though the Park-Rapp probe shows an excellent selectivity for hydrogen, the sensitivity of the sensor was low because of the low concentration of hydrogen, and the oxygen on the surface of the sensor. In order to increase the sensitivity of the sensor, the sensors were connected in series by Pt wires to increase the potential difference. The sensors were tested at temperatures ranging from $500-600^{\circ}C$.

Preparation of TiO2 Nanowires/Nanoparticles Composite Photoanodes for Dye-sensitized Solar Cells

  • Heo, Sung Yeon;Chi, Won Seok;Kim, Jin Kyu;Lee, Chang Soo;Kim, Jong Hak
    • Rapid Communication in Photoscience
    • /
    • 제2권3호
    • /
    • pp.82-84
    • /
    • 2013
  • We fabricated dye-sensitized solar cells (DSSCs) with $TiO_2$ nanowire (NW)/nanoparticle (NP) composite and solidified nanogel as the photoelectrode and electrolyte, respectively. $TiO_2$ NWs were generated via pore-infiltration of titanium (IV) isopropoxide (TTIP) into a track-etched polycarbonate membrane with a pore diameter of 100 nm, followed by calcination at $500^{\circ}C$. Energy conversion efficiency of $TiO_2$ NW/NP-based DSSCs was always higher than that of NP-based cells. We attributed this to improved light scattering and electron transport by $TiO_2$ NWs, as verified by intensity modulation photocurrent spectroscopy (IMPS) and intensity modulation photovoltage spectroscopy (IMVS) analyses. Quasi-solid-state DSSCs with NW/NP composites exhibited 5.0% efficiency at 100 $mW/cm^2$, which was much greater than that of NP-based cells (3.2%).