Browse > Article

Hydrogen Production Technology using High Temperature Electrolysis  

Hong, Hyun Seon (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Choo, Soo-Tae (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Yun, Yongseung (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Publication Information
Transactions of the Korean hydrogen and new energy society / v.14, no.4, 2003 , pp. 335-347 More about this Journal
Abstract
High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.
Keywords
High temperature electrolysis; Hydrogen production; Oxide electrodes and electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. D$\ddot o$itz, E. E. Erdle and R. Streicher, In: H. Wendt, editor. Electrochemieal Hydrogen technology, Amsterdam: Elsevier, 1990
2 J.H. Morehouse, Int. J. Hydrogen Energy, Vol. 15 (1990) 349-356   DOI   ScienceOn
3 R.M. Bowman, J.J. Bassam and K.F. Blurton, Proc. 15th Intersociety Energy Conversion Engng Conf., (1980) 1725
4 M.A. Liepa and A. Borhan, Int. J. Hydrogen Energy, Vol. 11 (1986) 435-442   DOI   ScienceOn
5 J. Martinez-Frias A. Pham and S.M. Aceves, Int. J. Hydrogen Energy, Vol. 28 (2003) 483-490   DOI   ScienceOn
6 H.S. Spacil and C.S. Tedmon, Jr., J. Electrochem. Soc. Vol. 116, 1969, p. 1618   DOI
7 B.G. Pound, D.J.M. Bevan and J.O'M. Bockris, Int. J. Hydrogen Energy, Vol. 6 (1981) 473-486   DOI   ScienceOn
8 J.O'M. Bockris, B. Dandapani, D. Cocke and J. Ghoroghchian, Int. J. Hydrogen Energy, Vol. 10 (1985) 179-201   DOI   ScienceOn
9 S. Dutta, D.L. Block and R.L. Port, Int. J. Hydrogen Energy, Vol. 15 (1990) 387-395   DOI   ScienceOn
10 N.J. Maskalick, Technical Progress Report of Brookhaven National laboratory, BNL-34840 (1984) 1
11 Buden et al., 19th ITCEC Proc., Vol. 1, San Francisco, C.A. (1984) 89
12 W. D$\ddot o$itz, G. Dietrich, E. Erdle and R. Streicher, Int. J. Hydrogen Energy, Vol. 13 (1988) 283-287   DOI   ScienceOn
13 S. Herring, R. Anderson, J. O'Brien, Paul Lessing and C. Stoots, 2003 Hydrogen & Fuel Cells Merit Review Meeting, Berkeley, C.A, May 20, 2003
14 G.B. Barbi and C.M. Mari, Solid State lonics, Vol. 6 (1982) 341-351   DOI   ScienceOn
15 H. Arashi, H. Naito and H. Miura, Int. J. Hydrogen Energy, Vol. 16 (1991) 603-608   DOI   ScienceOn
16 H.S. Spacil and C.S. Tedmon, Jr., J. Electrochem. Soc., Vol. 116 (1969) 1627-1633   DOI
17 F.J. Salzano, G. Skaperdas and A. Mezzina, Int. J. Hydrogen Energy, Vol. 10 (1985) 801-809   DOI   ScienceOn
18 J.E. Funk, 10th Wortd Hydrogen Energy Conference (1994)
19 K.H. Quandt and R. Streicher, Int. J. Hydrogen Energy, Vol. 11 (1986) 309-315   DOI   ScienceOn
20 A.L. Vance, 2003 Hydrogen & Fuel Cells Merit Review Meeting, Berkeley, CA, May 20, 2093
21 W. D$\ddot o$nitz and E. Erdle, Int J. Hydogen Energy, Vol. 10 (1985) 291-295   DOI   ScienceOn