• Title/Summary/Keyword: Solid-electrolyte

Search Result 699, Processing Time 0.026 seconds

Thermal managing effects by cooling channels on performance of a PEMFC (냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구)

  • Sohn, Young-Jun;Kim, Min-Jin;Park, Gu-Gon;Kim, Kyoung-Youn;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF

Preparation and Electrical Conductivity of Scandia Stabilized Zirconia by using Ultrasonic Spray Pyrolysis (초음파 분무 열분해법을 이용한 스칸디아 안정화 지르니코니아의 제조와 전기 전도도)

  • Choi, Young-Hoon;Peck, Dong-Hyun;Park, Young-Chul;Lim, Kyoung-Tae;Suhr, Dong-Soo;Wackerl, J.;Markus, T.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.690-695
    • /
    • 2007
  • Scandia stabilized zirconia (ScSZ) is adapted for electrolyte material of solid oxide fuel cell (SOFC) because of its high ionic conductivity and chemical stability. ScMnSZ1 powder having a composition of $((ZrO_2)_{0.89}(Sc_2O_3)_{0.1}(MnO_2)_{0.01})$ is synthesized by ultrasonic spray pyrolysis (USP) method. Porous ScMnSZ1 powder is obtained by using a pore forming agent. Microstructure and morphology, particle size distribution of porous powder synthesized with 3wt% pore forming agent are investigated. Sintered ScMnSZ1 sample with ground fine powder are also investigated their microstructure and electrical conductivity. The electrical conductivity of sintered ScMnSZ1 samples with ground fine powder was 0.082 S/cm, 0.127 S/cm and 0.249 S/cm at $750^{\circ}C$, $800^{\circ}C$ and $900^{\circ}C$, respectively.

Electrochemical Properties of a Zirconia Membrane with a Lanthanum Manganate-Zirconia Composite Electrode and its Oxygen Permeation Characteristics by Applied Currents

  • Park, Ji Young;Jung, Noh Hyun;Jung, Doh Won;Ahn, Sung-Jin;Park, Hee Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.197-204
    • /
    • 2019
  • An electrochemical oxygen permeating membrane (OPM) is fabricated using Zr0.895Sc0.095Ce0.005Gd0.005O2-δ (ScCeGdZ) as the solid electrolyte and aLa0.7Sr0.3MnO3-bScCeGdZ composite (LZab, electrode) as the electrode. The crystal phase of the electrode and the microstructure of the membrane is investigated with X-ray diffraction and scanning electron microscopy. The electrochemical resistance of the membrane is examined using 2-p ac impedance spectroscopy, and LZ55 shows the lowest electrode resistance among LZ82, LZ55 and LZ37. The oxygen permeation is studied with an oxygen permeation cell with a zirconia oxygen sensor. The oxygen flux of the OPM with LZ55 is nearly consistent with the theoretical value calculated from Faraday's Law below a critical current. However, it becomes saturated above the critical current due to the limit of the oxygen ionic conduction of the OPM. The OPM with LZ55 has a very high oxygen permeation flux of ~ 3.5 × 10-6 mol/㎠s in I = 1.4 A/㎠.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Electrical Conductance and Electrode Reaction of $RbAg_4I_5$ Single Crystals (고체전해질 $RbAg_4I_5$ 단결정의 전기전도성과 전극반응)

  • Jong Hee Park;Woon-Kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 1980
  • The electrical conductivity of solid electrolyte $RbAg_4I_5$ single crystal was studied at various temperatures. The four-probe method was used in measuring the conductance with an ac signal imposed on the specimen. The ionic conductivity was $0.284 ohm^{-1} cm^{-1}\;at\;25^{\circ}C$, and the activation energy for $Ag^+$ ion migration was calulated to be 1.70 kcal/mole. These values agree well with those reported for polycrystalline samples. Reactions at $Ag/RbAg_4I_5$ interface were studied by cyclic voltammetry with a silver reference electrode. It was found that silver ion is reversibly reduced at silver surfaces below zero volt, and iodide was oxidized above +0.67 volt.The anodic current arising from the oxidation of the electrode was small in magnitude initially over a wide range of potential, but, after silver was cathodically deposited on the electrode, reversing the potential sweep to the anodic direction resulted in a sharp peak of anodic current.

  • PDF

COLLOIDAL PROPERTIES OF HOLLOW LATICES AND THEIR ROLES IN CONTROLLING COLORIMETRIC PARAMETERS OF COATED PAPER SURFACE

  • Hitomi HAMADA;Yoko SAITO
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.309-314
    • /
    • 1999
  • With a view to seek the influence of hollow sphere pigments of latex upon the printed color on coated paper surface, the hollow sphere pigments were compared with filled ones in a variety of experimental approaches. Colloidal properties of latices were determined by measuring zeta potential and particle size distribution. For the amphoteric filled sphere pigment of latex, the polarity was reversed from the negative side to the positive side with decreasing pH. An extraordinarily high peak in the particle size distribution of the amphoteric filled evidenced aggregation between latex particles near the isoelectric point, depending on the electrolyte concentration and pH of the suspending medium. Coated papers containing the hollow sphere pigment in their coating improved optical properties like gloss and brightness. Optical parameters solely of the coating could account for this finding. An equation derived from the Kubelka-Munk equation calculated them fro twice measurements of reflectance of a coated paper over two substrates of different reflectances. This method permitted to predict brightness of coated paper of which coat weight would be different fro the actual one. The colorimetric parameters of solid-printed surfaces of the coated papers closely related to optical and structural properties of the coated papers. The color of the printed surfaces was dominated by the brightness and the smoothness of the coated papers. The hollow sphere pigments were proved to improve optical properties of coated paper and to control minutely colorimetric parameters of printed surfaces.

Microstructure Control of Porous Ceramics by Freeze-Drying of Aqueous Slurry (동결건조공정을 이용한 다공성 세라믹스의 미세구조 제어)

  • 황해진;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • In this study, we proposed new forming process for a porous ceramic body with unique pore structure. h tubular-type porous NiO-YSZ body with radially aligned pore channels was prepared by freeze-drying of aqueous slurry. A NiO-YSZ slurry was poured into the mold, which was designed to control the crystallization direction of the ice, followed by freezing. Thereafter the ice was sublimated at a reduced pressure. SEM observations revealed that the NiO-YSZ porous body showed aligned large pore channels parallel to the ice growth direction, and fine pores are formed around the outer surface of the tube. It was considered that the difference in the ice growth rate during the freezing process resulted in such a characteristic microstructure. Bilayer consisting of dense thin electrolyte film of YSZ onto the tubular type porous body has been successfully fabricated using a slurry-coating process followed by co-firing. It was regarded that the obtained bilayer structure is suitable for constructing electrode-support type electrochemical devices such as solid oxide fuel cells.

Cathode Materials LaNi1−xCuxO3 for Low Temperature Solid Oxide Fuel Cells

  • Sun, Juncai;Wang, Chengli;Li, Song;Ji, Shijun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.755-759
    • /
    • 2008
  • New cathode materials $LaNi_{1-x}{Cu_x}{O_3}$ (typically $LaNi_{0.8}Cu_{0.2}O_3$) were synthesized using a co-precipitation method. The structure and morphology of the powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite material [$Ce_{0.8}Sm_{0.2}O_{2-\ddot{a}}$(SDC) and carbonate (${Na_2}{CO_3},{Li_2}{CO_3}$)], NiO and $LaNi_{1-x}{Cu_x}{O_3}$ were used as the electrolyte, anode and cathode, respectively. The electrochemical performance of La-Ni-Cu-O perovskite oxide at low temperatures ($400{\sim}550^{\circ}C$) was studied. The results showed that $LaNi_{0.8}Cu_{0.2}O_3$ precursor powder prepared through a co-precipitation method and calcined at $860^{\circ}C$ for 2 h formed uniform grains with diameters in the range of $400{\sim}500\;nm$. The maximum power density and the short circuit current density of the single cell unit at $550^{\circ}C$ were found to be $390\;mW/cm^2$ and $968\;mA/cm^2$, respectively.

Charge/discharge Properties of $V_{6}O_{13}$ Composite/Li Cell with Solid Polymer Electrolyte (고체 고분자 전해질을 사용한 $V_{6}O_{13}$ Composite/Li Cell의 충방전 특성)

  • Kim, J.U.;Yu, Y.H.;Jeong, I.S.;Park, B.K.;Gu, H.B.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1414-1417
    • /
    • 1996
  • The purpose of this study Is to research and develop $V_{6}O_{13}$ composite cathode for lithium thin film battery. $V_{6}O_{13}$ represents a class of cathode active material used in Li rechargeable batteries. In this study, we investigated cyclic voltammetry and charge/discharge characteristics of $V_6O_{13}$/SPE/Li cells. Cyclic voltammogram of $V_{6}O_{13}$/SPE/Li cell at scan rate 1mV/sec showed reduction peaks of 2.25V and 2.4V and oxidation peaks of 2.4V and 2.2V. The discharge curve of $V_{6}O_{13}$/SPE/Li cell showed 4 potential plateaus. The discharge capacity was decreased in the beginning of charge/discharge cycling. After 8th cycling, the discharge capacity was stable. The discharge capacity of 1st cycle and 15th cycle was 290mAh/g and 147mAh/g at $25^{\circ}C$, respectively.

  • PDF

Thermal Characteristics of Zr/BaCrO4 Heat Paper with Fuel/Oxidizer Compositions (조성비에 따른 Zr/BaCrO4 열지의 열적 특성)

  • Im, Chae-Nam;Lee, Jung-Min;Park, Byeong-June;Kang, Seung-Ho;Cheong, Hae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.652-658
    • /
    • 2016
  • Thermal batteries use inorganic salt as electrolyte, which is inactive at room temperature. As soon as heat pellets are fired by an igniter, all the solid electrolytes are instantly melted into excellent ionic conductors. However, the abnormal heat generation by the igniter flame or heat pellets causes the thermal decomposition of the electrode and the melting of the anode, eventually leading to a thermal runaway, which results in overheating or explosion. The thermal runaway can be significantly reduced by the adoption of $Zr/BaCrO_4$ heat papers. In this study, the heat papers with various ratios of fuel (Zr) and oxidizer ($BaCrO_4$) were prepared by the paper-making process. We have investigated the calorimetric value, burning rate, and ignition sensitivity. The ignition test of heat pellets and the discharge test of thermal batteries were also carried out. At the composition of 40 wt.% of Zr, the heat papers showed the highest specific calorimetric value and burning rate. As a result, $Zr/BaCrO_4$ heat paper made by the paper-making process has shown the applicability for thermal batteries.