• Title/Summary/Keyword: Solid-electrolyte

Search Result 698, Processing Time 0.025 seconds

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Studies on LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$ based Glassy Solid Electrolytes (LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$계 유리고체전해질에 관한 연구)

  • Park, Gang-Seok;Gang, Eun-Tae;Kim, Gi-Won;Han, Sang-Mok
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.614-623
    • /
    • 1993
  • Electrical characteristics of LiF-$Li_{2}O-B_{2}O_{3}-P_{2}O_5$ glasses with fixed $Li_2O$ content have been investigated by using AC impedance spectroscopy. Part of the total lithium ions present in these glasses contributes to conduction, and the changes in electrical conductivity with composition was inconsistent with the weak electrolyte model. The power law could not be used to determine the hopping ion concentration in these glasses. Both mobile carrier density and mobility have been modified as Li were added in the form of LiF. The formation of $(B-O-P)^-,di^-$, and metaborate group gave additional available sites for Li+ diffusion causing the enhancement of conductivity. The observed maximum conductivity was $2.43 \times 10^{-4}$S/cm at $150^{\circ}C$ at the composition containing 8mol% LiF. The decomposion potential amounted to 5.94V. The Li/glass electrolyte/$TiS_2$ solid-state cell showed open circuit voltage of 3.14V and energy density of 22 Wh/Kg at $150^{\circ}C$.

  • PDF

Fabrication and analysis of electrochemical performance for energy storage device composed of metal-organic framework(MOF)/porous activated carbon composite material (금속유기골격체(Metal-organic Framework) 소재가 첨가된 다공성 활성탄소 복합재료 전극 기반의 에너지 저장 매체 제조 및 전기화학적 특성 분석)

  • Lee, Kyu Seok;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2020
  • In this study, supercapacitor based on the all solid state electrolyte with PVA(polyvinyl alcohol), ionic liquid as a BMIMBF4(1-buthyl-3-methylimidazolium tetrafluoroborate) and activated carbon/Ni-MOF composite was fabricated and characterized its electrochemical properties with function of MOF. In order to analysis and comparison that electrochemical performances [including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test] of prepared supercapacitor based on activated carbon/Ni-MOF composite and all solid state electrolyte. As a result, specific capacitance of the supercapacitor without Ni-MOF was 380 F/g which value decreased to 340 F/g after adding Ni-MOF to activated carbon as a electrode material. This result exhibited that decreased electrochemical property of the supercapacitor effected on physical hinderance in the electrode. In further, it needs to optimization of the Ni-MOF amount (wt%) in the electrode composite to maximize its electrochemical performances.

Fabrication Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells (중저온 SOFC용 Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) 및 La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) 복합체 양극 제조)

  • Lee, Seung-Hun;Yoon, Song-Seol;Cha, Young-Chul;Lee, Jun;Hwang, Hae-Jin;Moon, Ji-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.740-746
    • /
    • 2007
  • The potential candidates for IT-SOFCs cathode materials, $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) and $La_{0.6}Ba_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LBCF) powders, were synthesized by a EDTA-citrate combined method from $Sr(NO_3)_2$, $Ba(NO_3)_2$, $La(NO_3)_3{\cdot}6H_2O$, $Co(NO_3)_2{\cdot}6H_2O$, $Fe(NO_3)_3{\cdot}9H_2O$, citric acid and $EDTA-NH_3$. The cathode performance of symmetrical electrochemical cells consisting of BSCF-GDC or LBCF-GDC composite electrodes and a GDC electrolyte was investigated using by AC impedance spectroscopy at the temperature range of 500 to $700^{\circ}C$. It was found that a single phase perovskite could be successfully synthesized when the precursor is heated at $850^{\circ}C$ for 2 h. Due to thermal expansion mismatch between BSCF and GDC, the composite cathodes with lower GDC content than 45 wt% were peeled off from the GDC electrolyte and their electrode polarization resistance was estimated to be high. The thermal expansion coefficient of BSCF-GDC composites was decreased with increasing the GDC content and the electrode peeling off did not occur in BSCF-45 and 55 wt% GDC composites. BSCF-45 wt% GDC composite electrode showed the lowest area specific resistances (ASR) of 0.15 and $0.04{\Omega}{\cdot}cm^2$ at 600 and $700^{\circ}C$, respectively. On the other hand, LBCF-GDC composite cathodes showed higher ASR than the BSCF-45 and 55 wt% GDC and their cathode performance were decreased with the GDC content.

Analysis of Coherence in Middle School Students' Representation of Particulate Concepts (중학생들의 전해질과 이온에 관련된 입자 개념 표현의 일관성 분석)

  • Yoon, Heojeong;Lee, Yoonha
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.580-589
    • /
    • 2014
  • The concepts used to explain specific phenomenon can be influenced by context or coherent regardless of context. The purpose of this study is to understand middle school students' concept of particles in particular context and to investigate the effects of context on concept of particles. A conceptual questionnaire was developed to find out how students represented particles in two contexts: solid and solution states of electrolytes, and ion precipitation reaction. The questionnaire was administered to $9^{th}$ grade students after classes of 'electrolyte and ions' unit. The responses of students were analyzed using framework developed for categorization of students' concepts. The results are as follows: First, it was found that students used various concepts on particles when they explained solid and solution state of electrolytes, respectively. Second, we identified students' concepts of particles used to explain ion precipitation reaction. In addition, we recognized that majority of students failed to write correct chemical symbols. Third, approximately 79% of students showed coherent responses for explanation of particles in solution state of both electrolytes and ion precipitation reaction. About 57% of students had scientific concepts. Some suggestions were made based on results for acquisition of scientific concepts on particles in different contexts.

The Effect of Glass Fabric Separator Elongation on Electric Property in Structural Battery (유리섬유 분리막 인장으로 인한 구조전지의 전기적 물성 변화)

  • Shin, Jae-Sung;Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2017
  • Structural battery has been researched extensively to combine the functions of the battery and structure without gravimetric or volumetric increments compared to their individual components. The main idea is to employ carbon fabric as the reinforcement and electrode, glass fabric as the separator, and solid-state electrolyte which can transfer load. However, state-of-the-art solid-state electrolytes do not have sufficient load carrying functionality and exhibiting appropriate ion conductivity simultaneously. Therefore, in this research, a system which has both battery and load carrying capabilities using glass fabric separator and liquid electrolyte was devised and tested to investigate the potential and feasibility of this structural battery system and observe electric properties. It was observed that elongating separator decreased electrical behavior stability. A possible cause of this phenomenon was the elongated glass fabric separator inadequately preventing the penetration of small particles of the cathode material into the anode. This problem was verified additionally by using a commercial separator. The characteristic of the glass fabric and the interface between the electrode and glass fabric needed to be further studied for the realization of such a load carrying structural battery system.

$CO_{2}$ sensing characteristics of solid electrolyte gas sensor with the sensing membrane prepared by the mixture of alkali metal carbonate and binder (알카리 금속 탄산염과 결착제의 혼합물을 감지물질로 하는 고체전해질 가스센서의 $CO_{2}$ 감응 특성)

  • Chai, Yu-Sug;Song, Kap-Duk;Kang, Bong-Hwi;Seo, Moo-Gyo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.111-116
    • /
    • 1998
  • The simple solid electrolyte carbon dioxide sensor with heaters were fabricated by using Li ionic conductor. Two Au electrodes were used for the reference and sensing electrode respectively. Two types of gas sensors, type ( I ) and type (II), were fabricated. Type ( I ) sensor was fabricated by the method of melting and crystallizing alkali metal carbonate at the temperature of $420{\sim}500^{\circ}C$. The sensing membrane of type (II) sensor was formed by the printing method on sensing electrode after metal carbonate was mixed with binder. The response characteristics of sensors fabricated for the carbon dioxide were investigated for a range of $CO_{2}$ concentration from 950 ppm to 9,950 ppm at operating temperature $420^{\circ}C$. Type ( I ) sensor and type (II) sensor showed the sensitivity of 62 mV/decade and 65 mV/decade respectively. The emf/decade of type (II) sensor tested at $420^{\circ}C$ almost followed the theoretical value of Nernst's equation and showed stable response characteristics with the fast response time of $15{\sim}20$ sec. Also type (II) sensor showed excellent stability and reproduction properties for 60 days.

  • PDF

Investigations of LSM-YSZ as Air Electrode Materials for Solid Oxide Fuel Cells (고체산화물 연료전지용 공기극재료로써의 LSM-YSZ 전극 연구)

  • Lee, Yu-Gi;Kim, Jeong-Yeol;Lee, Yeong-Gi;Park, Dong-Gu;Jo, Beom-Rae;Park, Jong-Wan;Visco, Steven J.
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1075-1082
    • /
    • 1999
  • Composite air electrodes of 50/50 vol% LSM- YSZ where LSM =$\textrm{La}_{1-x}\textrm{Sr}_{x}\textrm{MnO}_{3}$(0$\leq$x$\leq$0.5) were prepared by colloidal deposition technique. The electrodes were then examined by scanning electron microscopy (SEM) and studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell (SOFC). Reproducible impedance spectra were confirmed by using the improved cell, consisting of LSM- YSZ/YSZ/LSM-YSZ. These spectra were a strong function of operating temperature and the stable conditions for the cells were typically reached at $900^{\circ}C$. The typical spectra measured for an air//air cell at $900^{\circ}C$ were composed of two arcs. Addition of YSZ to the LSM electrode led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities could further reduce cathode resistivity. The cathodic resistivity of the LSM-YSZ electrodes with catalytic interlayer (Ni or Sr) was much smaller than that of LSM-YSZ electrodes without catalytic interlayer. In addition, the cathodic resistivity of the LSM-YSZ electrodes was a strong function of composition of electrode materials, the electrolyte geometry, and applied current.

  • PDF

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.

Thermodynamic Properties of the Cell Systems made of the Metal and Its Oxide Electrodes (금속과 그 산화물 전극으로 된 전지 계들의 열역학적 성질)

  • Kwon Sun Roh;Eun Seok Lee;Alla F. Mayorova;Svetlana N. Mudrezova;Yeo, Cheol Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.635-641
    • /
    • 1993
  • Electrochemical cell, $Pt|air(PO_2=5.3{\times}10^{-3}atm)|Zr_{0.85}Ca_{0.15}O_{1.85}|air(PO_2= 0.21atm)|Pt$, has been designed to characterize the solid electrolyte and the temperature dependence of the electromotive force (EMF) has been measured in a temperature range of 600∼1000${\circ}$C. Solid electrolyte shows pure ionic conduction of the oxygen anion. The Fe-FexO, Co-CoO, Ni-NiO, and Cu2O-CuO electrodes have been prepared by mixing the 1 : 1 mole ratio of each metal and metal oxide and then by heating at 800${\circ}$C for 6 hours. Electrochemical cells, Pt│M(s), $MO(s)|Zr_{0.85}Ca_{0.15}O_{1.85}|air(PO_2=0.21atm)|Pt$, have been designed and the temperature dependence of the EMF has also been measured in the same temperature range. The changes of the thermodynamic state functions for the formation of the metal oxides are calculated from the electromotive forces and their temperature dependences. The material properties of the oxide systems are also discussed with the function changes.

  • PDF