• Title/Summary/Keyword: Solid-State Disk

Search Result 112, Processing Time 0.037 seconds

Efficient DRAM Buffer Access Scheduling Techniques for SSD Storage System (SSD 스토리지 시스템을 위한 효율적인 DRAM 버퍼 액세스 스케줄링 기법)

  • Park, Jun-Su;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.48-56
    • /
    • 2011
  • Recently, new storage device SSD(Solid State Disk) based on NAND flash memory is gradually replacing HDD(Hard Disk Drive) in mobile device and thus a variety of research efforts are going on to find the cost-effective ways of performance improvement. By increasing the NAND flash channels in order to enhance the bandwidth through parallel processing, DRAM buffer which acts as a buffer cache between host(PC) and NAND flash has become the bottleneck point. To resolve this problem, this paper proposes an efficient low-cost scheme to increase SSD performance by improving DRAM buffer bandwidth through scheduling techniques which utilize DRAM multi-banks. When both host and NAND flash multi-channels request access to DRAM buffer concurrently, the proposed technique checks their destination and then schedules appropriately considering properties of DRAMs. It can reduce overheads of bank active time and row latency significantly and thus optimizes DRAM buffer bandwidth utilization. The result reveals that the proposed technique improves the SSD performance by 47.4% in read and 47.7% in write operation respectively compared to conventional methods with negligible changes and increases in the hardware.

Analysis of Linux System changes by adoption XFS File System (XFS 파일 시스템 채택에 따른 리눅스 시스템 변화 분석)

  • Sung, Kyung
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.497-503
    • /
    • 2018
  • RHEL 7, the leader in the enterprise Linux market, has dramatically increased the maximum support specification, such as file system size, file size, etc., by changing the default file system from EXT to XFS. It's not just an increase in support specifications, it's working on daemons, and it's showing excellent performance on high-performance disks such as high-capacity disks and solid state drives. Changes in the file system mean changes in direct operating techniques, such as changing related commands, changing backup tools, and changing disk quota settings. The changes to the XFS file system are making a lot of changes to the operation of the Linux system, but we believe that the position of the Linux operating system in the server field will become stronger.

Data Deduplication Method using PRAM Cache in SSD Storage System (SSD 스토리지 시스템에서 PRAM 캐시를 이용한 데이터 중복제거 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.117-123
    • /
    • 2013
  • In the recent cloud storage environment, the amount of SSD (Solid-State Drive) replacing with the traditional hard disk drive is increasing. Management of SSD for its space efficiency has become important since SSD provides fast IO performance due to no mechanical movement whereas it has wearable characteristics and does not provide in place update. In order to manage space efficiency of SSD, data de-duplication technique is frequently used. However, this technique occurs much overhead because it consists of data chunking, hasing and hash matching operations. In this paper, we propose new data de-duplication method using PRAM cache. The proposed method uses hierarchical hash tables and LRU(Least Recently Used) for data replacement in PRAM. First hash table in DRAM is used to store hash values of data cached in the PRAM and second hash table in PRAM is used to store hash values of data in SSD storage. The method also enhance data reliability against power failure by maintaining backup of first hash table into PRAM. Experimental results show that average writing frequency and operation time of the proposed method are 44.2% and 38.8% less than those of existing data de-depulication method, respectively, when three workloads are used.

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures in a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • Han, Jaehyuk;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.251-258
    • /
    • 2005
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings (HDB) in an HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Reynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigen value problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures In a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.572-578
    • /
    • 2003
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings in a HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Raynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigenvalue problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

  • PDF

Onset of Inertial Oscillation in a Rotating Flow (회전유동에서의 관성진동 원인규명)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

Analysis of the Phase Formation and the Sinterability of K+-β/β"-Al2O3 at High Temperatures (≥1600 ℃) (K+-β/β"-Al2O3의 고온 상관계와 소결성 분석)

  • Jang, Min-Ho;Kim, Seung-Gyun;Kim, Seok-Jun;Haw, Jung-Rim;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.317-321
    • /
    • 2009
  • In order to analyze the high temperature phase formation and the sinterability of super ionic conductor $K^+-{\beta}/{\beta}"-Al_2O_3$ which is commonly used as a solid oxide electrolyte, the pure $K^+-{\beta}/{\beta}"-Al_2O_3$ powder in the ternary system $K_2O-LiO_2-Al_2O_3$ was synthesized by solid state reaction and formed to tube and disk using slip casting method and cold isostatic pressing (CIP), respectively. The slip casting was conducted in an alumina mold with the slurry containing 40 wt% of solid contents and the CIP was carried out under 20 MPa. The samples were sintered at $1600^{\circ}C$, $1700^{\circ}C$ and $1750^{\circ}C$, respectively, and their phase formation and the sintering density were investigated according to the forming method. The samples produced by CIP showed far higher ${\beta}"-Al_2O_3$ fraction as compared with those by slip casting. On the other hand, the samples by slip casting showed slightly higher sintering density. The relative density reached to about 83% at $1750^{\circ}C$ and for 1 h, independent of the forming method. In the case of 90 min socking time, the density was decreased owing to the exaggerated grain growth and the pores by $K_2O$ evaporation.

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

Performance Evaluation of SSD Cache Based on DM-Cache (DM-Cache를 이용해 구현한 SSD 캐시의 성능 평가)

  • Lee, Jaemyoun;Kang, Kyungtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.409-418
    • /
    • 2014
  • The amount of data located in storage servers has dramatically increased with the growth in cloud and social networking services. Storage systems with very large capacities may suffer from poor reliability and long latency, problems which can be addressed by the use of a hybrid disk, in which mechanical and flash memory storage are combined. The Linux-based SSD(solid-state disk) uses a caching technique based on the DM-cache utility. We assess the limitations of DM-cache by evaluating its performance in diverse environments, and identify problems with the caching policy that it operates in response to various commands. This policy is effective in reducing latency when Linux is running in native mode; but when Linux is installed as a guest operating systems on a virtual machine, the overhead incurred by caching actually reduces performance.

Recycling Invalid Data Method for Improving I/O Performance in SSD Storage System (SSD 기반 스토리지 시스템에서 입출력 성능 향상을 위한 무효데이터 재활용 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Mehdi, Pirahandeh;Kim, Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.230-232
    • /
    • 2012
  • SSD(Solid State Disk)는 다수의 플래시 메모리로 구성되며 기존의 하드디스크(HDD) 보다 데이터 전송 속도가 빠르고 강한 내구성, 저소음, 저전력의 장점을 가지고 있다. 하지만 제자리 덮어쓰기가 안되므로 SSD 공간에서 무효데이터가 차지하는 비중이 높아지며, 한 셀당 쓰기 및 삭제 횟수가 제한되어 있다는 단점이 있다. 본 논문에서는 무효데이터와 입력데이터의 중복성 검사를 통하여 무효데이터를 재활용하는 중복제거 기법을 제안한다. 무효데이터의 재활용과 중복제거를 통하여 SSD의 마모도 감소와 가비지컬렉션의 빈도를 낮춰서 I/O 속도의 향상을 기대할 수 있다. 실험을 통하여 무효데이터를 재활용 하는 경우와 유효데이터를 활용한 중복제거 방법의 성능을 비교하였다.