2O3 at High Temperatures (≥1600 ℃)"> Analysis of the Phase Formation and the Sinterability of K+-β/β"-Al2O3 at High Temperatures (≥1600 ℃)

2O3의 고온 상관계와 소결성 분석"> K+-β/β"-Al2O3의 고온 상관계와 소결성 분석

  • Jang, Min-Ho (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Kim, Seung-Gyun (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Kim, Seok-Jun (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Haw, Jung-Rim (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Lim, Sung-Ki (Department of Materials Chemistry and Engineering, Konkuk University)
  • 장민호 (건국대학교 신소재공학과) ;
  • 김승균 (건국대학교 신소재공학과) ;
  • 김석준 (건국대학교 신소재공학과) ;
  • 허정림 (건국대학교 신소재공학과) ;
  • 임성기 (건국대학교 신소재공학과)
  • Received : 2009.03.17
  • Accepted : 2009.04.21
  • Published : 2009.06.10

Abstract

In order to analyze the high temperature phase formation and the sinterability of super ionic conductor $K^+-{\beta}/{\beta}"-Al_2O_3$ which is commonly used as a solid oxide electrolyte, the pure $K^+-{\beta}/{\beta}"-Al_2O_3$ powder in the ternary system $K_2O-LiO_2-Al_2O_3$ was synthesized by solid state reaction and formed to tube and disk using slip casting method and cold isostatic pressing (CIP), respectively. The slip casting was conducted in an alumina mold with the slurry containing 40 wt% of solid contents and the CIP was carried out under 20 MPa. The samples were sintered at $1600^{\circ}C$, $1700^{\circ}C$ and $1750^{\circ}C$, respectively, and their phase formation and the sintering density were investigated according to the forming method. The samples produced by CIP showed far higher ${\beta}"-Al_2O_3$ fraction as compared with those by slip casting. On the other hand, the samples by slip casting showed slightly higher sintering density. The relative density reached to about 83% at $1750^{\circ}C$ and for 1 h, independent of the forming method. In the case of 90 min socking time, the density was decreased owing to the exaggerated grain growth and the pores by $K_2O$ evaporation.

고체 산화물 전해질로 사용되고 있는 초 이온 전도체인 $K^+-{\beta}/{\beta}"-Al_2O_3$의 고온 상관계와 소결성 분석을 위하여 $K_2O-LiO_2-Al_2O_3$ 삼성분계로부터 고상반응을 통하여 순수한 $K^+-{\beta}/{\beta}"-Al_2O_3$ 분말을 합성한 후 slip casting방법과 냉간정수압성형에 의하여 tube와 disk형을 각각 제작하였다. Slip casting은 40 wt%의 고체함량을 가지는 슬러리를 사용해 알루미나 몰드에서 이루어졌고 냉간정수압성형은 20 MPa의 압력하에서 수행되었다. 성형체들은 $1600^{\circ}C$, $1700^{\circ}C$, $1750^{\circ}C$에서 각각 소결하여 성형방법에 따른 상관계와 소결밀도를 조사하였다. 냉간정수압성형에 의한 시편이 $1700^{\circ}C$까지 ${\beta}"-Al_2O_3$의 상분율이 월등히 높은 반면, 소결밀도에 있어서는 slip casting방법의 경우가 다소 높았다. 소결 시 상대밀도는 $1750^{\circ}C$에서 1 h 경과 후, 두 경우 모두 약 83%를 나타내었다. 90 min 이상 소결하였을 때는 입자의 과대성장과 기공으로 인해 오히려 밀도가 낮아졌다.

Keywords

Acknowledgement

Supported by : 기초전력연구원

References

  1. G. C. Farrington and J. L. Briant, Proceeding of the International Conference on Fast Ion Transport in Solid Electrodes and Electrolystes, 395, Lake Geneva, Wisconsin (1979)
  2. G. W. Schafer, H. J. Kim, and F. Aldinger, Solid State Ionics, 77, 234 (1995) https://doi.org/10.1016/0167-2738(95)91256-Y
  3. J. G. Li and X. Sun, Acta Mater., 48, 3103 (2000) https://doi.org/10.1016/S1359-6454(00)00115-4
  4. J. Li, Y. Ye, L. Shen, J. Chen, and H. Zhou, Materials Science and Engineering, 390, 265 (2005) https://doi.org/10.1016/j.msea.2004.08.025
  5. J. H. Shin, W. S. Kim, and S. K. Lim, J. Korean Ind. Eng. Chem., 16, 648 (2005)
  6. K. Kordesch and G. Simader, Fuel Cells and Their Applications, 141, VCH (1996)
  7. U. G. Paik, Slip casting, Ceramics (Korea), 8, 218 (1993)
  8. M. L. Fisher and F. F. Lange, J. Am. Ceram. Soc., 83, 1861 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01482.x
  9. W. Y. Chung, W. S. Kim, and S. K. Lim, J. Korean Ind. Eng. Chem., 14, 397 (2003)
  10. W. S. Kim and S. K. Lim, J. Korean Ind. Eng. Chem., 12, 312 (2001)
  11. A. P. de Kroon, G. W. Schaefer, and F. Aldinger, Chem. Mater., 7, 878 (1995) https://doi.org/10.1021/cm00053a011
  12. H. I. Song and E. S. Kim, Physica B, 150, 148(1985)
  13. W. S. Kim, C. H. Hwam, and S. K. Lim, J. Korean Ind. Eng. Chem., 12, 16 (2001)
  14. G. W. Schaefer and F. Aldinger, cfi/Ber. DFG., 73, 109 (1996)