• Title/Summary/Keyword: Solid water phantom

Search Result 70, Processing Time 0.025 seconds

Comparison of Virtual Wedge versus Physical Wedge Affecting on Dose Distribution of Treated Breast and Adjacent Normal Tissue for Tangential Breast Irradiation (유방암의 방사선치료에서 Virtual Wedge와 Physical Wedge사용에 따른 유방선량 및 주변조직선량의 차이)

  • Kim Yeon-Sil;Kim Sung-Whan;Yoon Sel-Chul;Lee Jung-Seok;Son Seok-Hyun;Choi Ihl-Bong
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • Purpose: The Ideal breast irradiation method should provide an optimal dose distribution In the treated breast volume and a minimum scatter dose to the nearby normal tissue. Physical wedges have been used to Improve the dose distribution In the treated breast, but unfortunately Introduce an Increased scatter dose outside the treatment yield, pavllculariy to the contralateral breast. The typical physical wedge (FW) was compared with 4he virtual wedge (VW) to do)ermine the difference In the dose distribution affecting on the treated breast and the contralateral breast, lung, heart and surrounding perlpheral soft tissue. Methods and Materials: The data collected consisted of a measurement taken with solid water, a Humanoid Alderson Rando phantom and patients. The radiation doses at the ipsllateral breast and skin, contralateral breast and skin, surrounding peripheral soft tissue, and Ipsllateral lung and heart were compared using the physical wedge and virtual wedge and the radiation dose distribution and DVH of the treated breast were compared. The beam-on time of each treatment technique was also compared Furthermore, the doses at treated breast skin, contralateral breast skin and skin 1.5 cm away from 4he field margin were also measured using TLD in 7 patients of tangential breast Irradiation and compared the results with phantom measurements. Results: The virtual wedge showed a decreased peripheral dose than those of a typical physical wedge at 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, and 60$^{\circ}$. According to the TLD measurements with 15$^{\circ}$ and 30$^{\circ}$ virtual wedge, the Irradiation dose decreased by 1.35$\%$ and 2.55$\%$ In the contralateral breast and by 0.87$\%$ and 1.9$\%$ In the skin of the contralateral breast respectively. Furthermore, the Irradiation dose decreased by 2.7$\%$ and 6.0$\%$ in the Ipsllateral lung and by 0.96$\%$ and 2.5$\%$ in the heart. The VW fields had lower peripheral doses than those of the PW fields by 1.8$\%$ and 2.33$\%$. However the skin dose Increased by 2.4$\%$ and 4.58$\%$ In the Ipsliateral breast. VW fields, In general, use less monitor units than PW fields and shoriened beam-on time about half of PW. The DVH analysis showed that each delivery technique results In comparable dose distribution in treated breast. Conclusion: A modest dose reduction to the surrounding normal tissue and uniform target homogeneity were observed using the VW technique compare to the PW beam in tangential breast Irradiation The VW field is dosmetrically superlor to the PW beam and can be an efficient method for minimizing acute, late radiation morbidity and reduce 4he linear accelerator loading bV decreasing the radiation delivery time.

Characteristics of dose distribution for virtual wedge (가변형 쐐기필터의 선량분포에 관한 특성)

  • 김부길;김진기
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • We was investigate the dosimetric characteristics of the virtual wedge and it compared to the conventional fixed wedge. Also we was evaluate the quality factor of the experimental multi-channel dosimetry system for virtual wedge. Recently virtual wedge technique and wedge fraction methods are available through the computer controlled asymmetric collimator or the independent jaw in medical linear accelerator for radiation therapy. The dosimetric characteristics are interpreted by radiation field analyzer RFA-7 system and PTW-UNIDOS system. Experimental multi-channel dosimetry system for virtual wedge was consists of the electrometer, the solid detector and array phantom. The solid detectors were constructed using commercially diodes for the assessment of quality assurance in radiotherapy. And it was used for the point dose measuring and field size scanning. The semiconductor detector and ion chamber were positioned at a dmax, 5 cm, 10 cm, 20 cm depth and its specific ratio was determined using a scanning data. Wedge angles in fixed and virtual type are compared with measurements in water phantom and it is shown that the wedge angle 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$were agree within 1$^{\circ}$ degree in 6, 10 MV photon beams. In PDD and beam flatness, experimental multi-channel disimetry system was capable of reproduceing the measured values usually to within $\pm$2.1% the statistical uncertainties of the data. It was used to describe dosimetric characteristics of virtual wedge in clinical photon beams. Also we was evaluate optimal use of the virtual wedge and improve the quality factor of the experimental multi-channel dosimetry system for virtual wedge.

  • PDF

Prediction of Midline Dose from Entrance and Exit Dose Using OSLD Measurements for Total Body Irradiation

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Background: This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). Materials and Methods: For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. Results and Discussion: The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. Conclusion: The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

The Evaluation of the dose calculation algorithm(AAA)'s Accuracy in Case of a Radiation Therapy on Inhomogeneous tissues using FFF beam (FFF빔을 사용한 불균질부 방사선치료 시 선량계산 알고리즘(AAA)의 정확성 평가)

  • Kim, In Woo;Chae, Seung Hoon;Kim, Min Jung;Kim, Bo Gyoum;Kim, Chan Yong;Park, So Yeon;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.321-327
    • /
    • 2014
  • Purpose : To verify the accuracy of the Ecilpse's dose calculation algorithm(AAA:Analytic anisotropic algorithm) in case of a radiation treatment on Inhomogeneous tissues using FFF beam comparing dose distribution at TPS with actual distribution. Materials and Methods : After acquiring CT images for radiation treatment by the location of tumors and sizes using the solid water phantoms, cork and chest tumor phantom made of paraffin, we established the treatment plan for 6MV photon therapy using our radiation treatment planning system for chest SABR, Ecilpse's AAA(Analytic anisotropic algorithm). According to the completed plan, using our TrueBeam STx(Varian medical system, Palo Alto, CA), we irradiated radiation on the chest tumor phantom on which EBT2 films are inserted and evaluated the dose value of the treatment plan and that of the actual phantom on Inhomogeneous tissue. Results : The difference of the dose value between TPS and measurement at the medial target is 1.28~2.7%, and, at the side of target including inhomogeneous tissues, the difference is 2.02%~7.40% at Ant, 4.46%~14.84% at Post, 0.98%~7.12% at Rt, 1.36%~4.08% at Lt, 2.38%~4.98% at Sup, and 0.94%~3.54% at Inf. Conclusion : In this study, we discovered the possibility of dose calculation's errors caused by FFF beam's characteristics and the inhomogeneous tissues when we do SBRT for inhomogeneous tissues. SBRT which is most popular therapy method needs high accuracy because it irradiates high dose radiation in small fraction. So, it is supposed that ideal treatment is possible if we minimize the errors when planning for treatment through more study about organ's characteristics like Inhomogeneous tissues and FFF beam's characteristics.

Case Report of Radiotherapy to a Breast Cancer Patient with a Pacemaker (인공심장박동기가 이식된 유방암환자의 방사선 치료에 대한 사례 보고)

  • Chae, Seung-Hoon;Park, Jang-Pil;Lee, Yang-Hoon;Yoo, Suk-Hyun;Seong, Won-Mo;Kim, Kyu-Bo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • Purpose: In this study, we considerate our radiation therapy process for the breast cancer patient implanted a pacemaker applying the machine movement surgery, shielding, beam selection. Materials and Methods: We perform radiation therapy to a 54 years old, breast cancer patient implanted a pacemaker. The patient underwent a surgery to move the position of a pacemaker to right side breast after consultation with cardiology department. Prescribed dose was 5,040 cGy and daily dose 180 cGy for 28 fractions. The 10 MV photon energy, field size 0/$9.5{\times}20$ cm, half beam and opposing portal irradiation are used. To find out appropriate thickness of shielding board, we carried out an experiment using a solid water phantom ($30{\times}30{\times}7$ cm), a Farmer-type chamber (TN30013, PTW, Germany) and a shielding board (Pb $28{\times}27{\times}0.1$ cm). We calculated expected absorbed dose to te pacemaker with absorb ratio and shielding ratio. In the PTP system (Eclipse, Varian, USA), we figured out how much radiation would be absorbed to the machine with and without shielding. First day of the radiation therapy, we measured head scatter to the pacemaker with MOSFET Dose Verification System (TN-RD-70-W, Medical Canada Ltd., Canada). Results: In the phantom measurement, we found out appropriate thickness was 2 mm of shielding board. In the RTP, when using 2 mm shielding the pacemaker will be absorbed 11.5~38.2 cGy and DVH is 77.3 cGy. In the first day of the therapy, 4.3 cGy was measured so 120.4 cGy was calculated during total therapy. The patient was free from any side effects, and the machine also normally functioned. Conclusion: As the report of association which have public confidence became superannuated, there is lack of data about new machine. We believe that radiation therapy to thiese kind of patients could be done successfully with co-operation, patient-suitable planning, accurate QA, frequent in-vivo dosimetry and monitoring.

  • PDF

Dose distribution at junctional area abutting X-ray and electron fields (X-선과 전자선의 인접조사에서 접합 조사면에서의 선량분포)

  • Yang, Kwang-Mo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.91-99
    • /
    • 2004
  • Purpose : For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Materials and methods : Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1Gy) were exposes to 8cm depth and surface(SSD 100cm) of phantom. The dose distribution to the junction line between photon($10cm{\times}10cm$ field with block) and electron($15cm{\times}15cm$ field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). Results : At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to $6\%$ of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was $4.5-30\%$ of reference dose in the electron field. Conclusion : When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  • PDF

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

Measurement of Radiation Using Tissue Equivalent Phantom in ICR Treatment (자궁강내 근접방사선조사시 인체조직등가 팬톰을 이용한 방사선량 측정)

  • Jang, Hong-Seok;Suh, Tae-Suk;Yoon, Sei-Chul;Ryu, Mi-Ryeong;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • This study is to compare A point doses in human pelvic phantom by film dosimetry, computer planning and manual calculation by using of along-away table. We developed tissue equivalent human pelvic phantom composed of four pieces of cylindrical acryl tubes with water, to simulate intracavitary radiation (ICR) in patients with cervix cancer. When the phantom assembled from 4 pieces, it has a small space for inserting Fletcher-Suit-Delclos applicator like a human vagina. Fletcher-Suit-Delclos applicator inserted into the space was packed tightly with furacin gauzes, and three $^{137}Cs$ sources with radioactivity of $15.7mg\;Ra-eq$ were inserted into the tandem. For the film dosimetry, two pieces of X-OMAT V film (Kodak Co.) of which planes include point A, were arranged orthogonally in the slits between phantoms. A point dose and iso-dose curves were measured by means of optical densitometer. A point doses by film dosimetry, RTP system and manual calculation by using of along-away table were compared, and iso-dose curves by film dosimetry and computer planning were also compared. The dose of A point was 51.2cGy/hr by film dosimetry, 46.7cGy/hr by RTP system and 47.9 cGy/hr by along-away table. A point dose by computer planning was similar to the dose by calculation using of along-away table with acceptable accuracy $({\pm}3%)$, however, the dose by film dosimetry was different from two others with about 10% error. Since most clinical beams contains a scatter component of low energy photons, the correlation between optical density and dose becomes tenuous. In addition, film suffers from several potential errors such as changes in processing conditions, interfilm emulsion differences, and artifacts caused by air pockets adjacent to the film. For these reasons, absolute dosimetry with film is impractical, however, it is very useful for checking qualitative patterns of a radiation distribution. In future, solid state dosimeter such as TLD must be used for the dosimetry of ionizing radiation. When considerable care is used, precision of approximately 3% may be obtained using TLD.

  • PDF

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.