• Title/Summary/Keyword: Solid surface

Search Result 2,429, Processing Time 0.03 seconds

Study on a Shape Deformation of Water Meniscus for the Rectangular and Circular Tips Moving Horizontally (사각 및 원형 팁의 횡운동에 의한 물 메니스커스 형상변화에 관한 연구)

  • Kim, Sang-Sun;Son, Sung-Wan;Ha, Man-Yeong;Yoon, Hyun-Sik;Kim, Hyung-Rak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.843-851
    • /
    • 2011
  • A two-dimensional immiscible water meniscus deformation phenomena on a moving tip in a channel has been investigated by using lattice Boltzmann method involving two-phase model. We studied the behavior of a water meniscus between the tip and a solid surface. The contact angles of the tip and a solid surface considered are in the range from $10^{\circ}$ to $170^{\circ}$. The velocity of the tip used in the study are 0.01, 0.001, and 0.0001. The shapes of tip considered are rectangular and circular. The behavior of water confined between the tip and a solid surface depends on the contact angles of the tip and a solid surface, and the tip velocity. When the tip is moving, we can observe the various behaviors of shear deformation of a water meniscus. As time goes on, the behavior of a water meniscus can be classified into three different patterns which are separated from the tip or adhered to the tip or sticked to a solid surface according to the contact angles and the tip velocity.

Surface Discharge Characteristics in Dry-Air on Laminated Epoxy Solid Dielectrics and Conductive Particle (적층된 에폭시 고체유전체와 도전성 파티클에 대한 Dry-Air의 연면방전특성)

  • Lim, Dong-Young;Jeon, Jong-Cheul;Bae, Sungwoo;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • This paper presents the surface discharge characteristics in Dry-Air on laminated epoxy solid dielectrics and conductive particles in order to provide the valuable information for the insulation design of eco- friendly gas insulated switchgear. To improve insulation performance, the three types of the laminated epoxy solid dielectrics were proposed, and it was revealed that their surface discharge characteristics were similar to the bakelite dielectrics of same-laminated types. From the surface discharge characteristics of dry air, it was demonstrated that the effect of conductive particles on surface discharge voltage was dominant when there are this particles at the shortest electrode gap and that the degradation of insulation performance on the conductive particles was evident in epoxy than teflon. These phenomena were interpreted in terms of particle-triggered discharge mechanism and electric field of triple junction, respectively.

A NUMERICAL ANALYSIS ON THE BEHAVIOR OF LIQUID FILM AROUND A CURVED EDGE (곡률이 있는 모서리 주변에서의 액막 거동에 대한 수치해석적 연구)

  • Lee, Geonkang;Hur, Nahmkeon;Son, Gihun
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2012
  • Due to the effect of surface tension, liquid film around a curved edge of solid surface moves from the corner to the flat surface. During this behavior of liquid film, film sagging phenomenon is easily occurred at the solid surface. Behavior of liquid film is determined with the effects of the properties of liquid film and the geometric factors of solid surface. In the present study, 2-D transient CFD simulations were conducted on the behavior of liquid film around a curved edge. The two-phase interfacial flow of liquid film was numerically investigated by using a VOF method in order to predict the film sagging around a curved edge. In the steady state of behavior of liquid film, the liquid film thickness of numerical result showed a good agreement with experimental data. After verifying the numerical results, the characteristics of behavior of liquid film were numerically analyzed with various properties of liquid film such as surface tension coefficient and viscosity. The effects of geometric factors on film sagging were also investigated to reduce the film sagging around a curved edge.

Analysis on Solid Insulator Flashover Characteristics on Moisture Contamination for Electrical Insulation Improvement of ESS (ESS 안전성 개선을 위한 결로 운전 조건 고려 고체절연물 연면 절연파괴특성 분석)

  • Kim, Jin-Tae;Lee, Seung-Yong;Kim, Ji-young;Seok, Bok Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.317-321
    • /
    • 2021
  • As the large-scale renewable energy power plant increases, the high-capacity and compact Energy Storage System (ESS) is required. However, this trend could reduce the insulation reliability of ESS. In this study, the surface flashover characteristics for four types of solid insulators are investigated in the uniform electric field with AC and Lightning Impulse (LI) voltage waveforms under various contamination levels. In addtion, insulator surfaces are compared based on the contact angle before and after surface flashover. The experimental results show that AC flashover voltage is dependent on the materials and the contamination level, but LI flashover voltage is only associated with the contamination level. Especially, AC flashover voltage of PC (PolyCarbonate) is higher than that of other insulators, which is associated with the unique and sequential creepage discharge propagation pattern of PC. The localized discharges on the surface of PC form corresponding tracking points. Then, the interconnected trackings result in the complete flashover. This flashover patterns degrade the surface of PC much more than that of epoxy and Bulk Molding Compoud (BMC). Thus, the contact angle of PC is significantly reduced compared to that of other insulators. The increased hydrophilicity in the surface of PC enhances the insulator surface conductivity.

The Frequency Characteristics of Electromagnetic Waves and Discharge Phenomena Caused by Polluted Condition of Solide Insulator Surface (고체절연체표면의 오염상태에 따른 방전현상과 방사전자파의 주파수 특성)

  • 김충년;박원주;이광식;이동인;김인식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.43-50
    • /
    • 2001
  • In this paper, the discharge phenomena and electromagnetic waves caused by discharge with insertion of a solid insulator and flame between sphere-sphere electrodes in air ware investigated. The surface discharge light and patterns of flame generated on a solid insulator surface were observed by using a CCD(Charged Coupled Device) camera. Also, the radiated electromagnetic waves were measured by using a biconical antenna and a spectrum analyzer. The surface discharge light generated on the solid insulator surface was larger and the size of flame was smaller by increasing allied voltages. Also, voltage distortion by voltage drop was strongly revealed when a insulator surface was polluted. When a solid insulator surface was not polluted, the electric field stength of electromagnetic waves was 10∼17[dBuV/m] higher than a polluted solide insulator, and 5∼9[dBuV/m] higher than a polluted solide insulator and flame.

  • PDF

Design of Reduced Shear Stress with High-Viscosity Flow Using Characteristics of Thin Film Flow on Solid Surfaces (완전접촉 경계면 위의 박막유동 특성을 이용한 고점도 전단유동에 따른 표면응력 감소 설계)

  • Park, Boo Seong;Kim, Bo Hung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1027-1034
    • /
    • 2014
  • The shear stress on a surface due to the thin film fluid flow is an important issue. In case of a rotating disk, the fluid is delivered to the edge of the disk by centrifugal force, which acts as a body force on the fluid. Wear of a surface is affected by the shear stress acting on the surface and curvature. In this study, we utilize computational fluid dynamics software to model the ratio of curvature and local shear stress on solid surfaces. The key goal of the study is to determine an optimized curvature for the thin film fluid flow on a solid surface in order to minimize the local shear stress affecting the wear of this surface. Our results on the effects of curvature will be utilized for the design of devices that utilize thin film fluid flow on a solid surface, such as rotating-disk spray systems and thin film coating.

Evaporation Cooling of Droplet due to Surface Roughness under Radiative Heat Input Condition (복사가열조건에서 표면 거칠기에 따른 액적의 증발 냉각)

  • Bang Chang-Hoon;Kwon Jin-Sun;Yea Yong-Taeg
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.14-19
    • /
    • 2004
  • The objective of the present work is to examine evaporation cooling of droplet due to surface roughness under radiative heat input condition. The surface temperatures varied from $80\~160^{\circ}C$ on aluminum alloy (AL 2024) and surface roughness was $0.18{\mu}m,\;1.36{\mu}m$. The results are as follows; Regardless of surface roughness under radiative heat input condition, as droplet diameter is larger, the in-depth temperature of solid decreases and evaporation time increases. In the case of $0.18{\mu}m\;and\;1.36{\mu}m$ of surface roughness, the larger the surface roughness is, the less the evaporation time is and the larger the temperature within the solid is. In the case of $Ra=0.18{\mu}m$ evaporation time and time averaged heat flux for radiative heat input case is shorter than for the conductive case.

직물표면구조 Creative Effect Solid 제품개발

  • Seo, Mal-Yong;Gwak, Seong-Hyeon;Sim, Seung-Beom;Park, Jun-Su;Gang, Yun-Hwa
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.11a
    • /
    • pp.139-140
    • /
    • 2009
  • In this study, 53 creative effect solid weave structures that had distinct cross structure on the surface of the fabrics with IT fusion technology were developed. The effect solid pattern book were made with 45 item among the creative effect solid weave structures developed for this study. If textile companies use data base of creative effect solid weave structures that may not be modified theses kinds of DB, the competition of korea textile will be enhanced.

  • PDF

A Study for Estimation of the Surface Temperature Rise Using the FVM and Semi-Infinite Solid Analysis (FVM과 반무한체 해석을 이용한 표면온도예측에 관한 연구)

  • 김태완;이상돈;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.389-395
    • /
    • 2002
  • The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. The calculation of the surface temperature at a sliding contact interface has been an interesting and important subject for tribologist. Temperature analyses were usually performed under the consideration contacted two bodies as semi-infinite. But the analysis was difficulty in being applied to finite body and considering the boundary condition. In this study, contact temperature rise of two finite bodies and surfaces due to frictional heating under the rectangular and the circular sliding contact is calculated. Heat partition factor is calculated using semi-infinite solid analysis and the temperature of the finite bodies is calculated using FVM. It will be shown that Most frictional heat in the fore part of contact region for sliding direction is conducted into body that has a moving heat source and the site of the maximum temperature rise moves to the opposite direction of sliding during sliding.

A Study on Solid Particle Erosion Wear Characteristics of High Cr White Iron Hardfacing by Response Surface Method (반응표면분석에 의한 고 Cr 철계 오버레이 용접부의 분체침식마모 특성의 연구)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.551-556
    • /
    • 2002
  • Solid particle erosion wear characteristics of high Cr white iron hardfacing were investigated using the erosion wear test method according with the ASTM G76-95. Wear experiments, where the blast angle, blast distance and blast pressure were selected as test variables, were planned and analyzed by response surface method (RSM to evaluate the wear loss statistically and quantitatively. The measured wear losses well coincided with the calculated ones by the experimental equation. The wear loss of high Cr cast iron hardfacing was increased with blasting pressure, but affected in a complicated way by the blasting angle and distance. Erosion wear of high Cr cast iron hardfacing could be well predicted by RSM analysis of wear variables.