• Title/Summary/Keyword: Solid surface

Search Result 2,428, Processing Time 0.029 seconds

Separation of Ferrous Materials from Municipal Solid waste Incineration Bottom Ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 ferrous material의 분리(分離) 특성(特性))

  • Um, Nam-Il;Han, Gi-Chun;You, Kwang-Suk;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.19-26
    • /
    • 2007
  • The bottom ash of municipal solid waste incineration generated during incineration of municipal solid waste in metropolitan area consists of ceramics, glasses, ferrous materials, combustible materials and food waste and so on. Although the ferrous material was separated by the magnetic separation before the incineration process, of which content accounts for about $3{\sim}11%$ in bottom ash. The formation of a $Fe_3O_4-Fe_2O_3$ double layer(similar to pure Fe) on the iron surface was found during air-annealing in the incinerator at $1000^{\circ}C$. A strong thermal shock, such as that takes place during water-cooling of bottom ash, leads to the breakdown of this oxidation layer, facilitating the degradation of ferrous metals and the formation of corrosion products and it existed as $Fe_2O_3,\;Fe_3O_4\;and\;FeS_2$. So, many problems could occur in the use of bottom ash as an aggregate substitutes in construction field. Therefore, in this study, the separation of ferrous materials from municipal solid waste incineration bottom ash was investigated. In the result, the ferrous product(such as $Fe_2O_3,\;Fe_3O_4,\;FeS_2$ and iron) by magnetic separator at 3800 gauss per total bottom ash(w/w.%) accounted for about 18.7%, and 87.7% of the ferrous product was in the size over 1.18 mm. Also the iron per total bottom ash accounted for about 3.8% and the majority of it was in the size over 1.18 mm.

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정 조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • 김회남;박성용;서태석;권수일;윤세철
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.87-102
    • /
    • 1997
  • The absolute absorbed dose can be determined according to the measurement conditions; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of 10cm $\times$ 10cm field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations of phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG21 and IAEA protocol. The differences between two protocols are within 1% while the average value of IAEA protocol was 0.5% smaller than TG21 protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within 1%, but individual discrepancies are in the range of - 2.5% to 1.2% depending upon the choice of measurement combination. The largest discrepancy of - 2.5% was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coeficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, it shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해(噴霧熱分解) 공정(工程)에 의한 주석(朱錫) 산화물(酸化物) 나노 분말(粉末) 제조(製造))

  • Yu, Jae-Keun;Cha, Kwang-Yong;Kim, Myung-Choun;Han, Joung-Su;Jang, Jae-Bum;Lee, Yong-Hwa;Kim, Dong-Hee
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • This study is the previous stage for the mass production technology development of the nano-sized tin oxide powder by the recycling of the wasted tin metal, and nano-sized tin oxide powder with the average particle size below 50 nm is prepared from the tin chloride solution by the spray pyrolysis process. As the reaction temperature increases from 800 to 850, the average particle size of the generated powder increases from 20 to 30 nm. As the reaction temperature increases to 900, the droplet type is composed of the particles with the average size of the 30 nm. while the average size of the independent particles increases up to $80{\sim}100$ nm and the surface microstructure becomes more solid. Until $900^{\circ}C$, as the reaction temperature increases, the XRD peak intensity increases, while the specific surface area decreases. When the reaction temperature increases to 950, most of the powder appears with the independent type and the average particle size decrease down to 70 nm. The XRD peak intensity greatly decreases and the specific surface area increases almost twice.

Adsorption Behavior of Pb2+ Ions on Alginate Beads and Capsules (알지네이트 비드와 캡슐에서의 납 이온의 흡착거동)

  • Shin, Eun Woo;Thuong, Nguyen Thi Lien;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.166-171
    • /
    • 2007
  • The adsorption behavior of $Pb^{2+}$ was compared between calcium alginate beads and capsules, which have different structures of alginate-gel core beads and liquid core alginate-membrane capsules, respectively. In terms of adsorption kinetics and isotherms, adsorption characteristics depending on pH and hardening time were compared for both adsorbents and also released calcium ion during the adsorption process was monitored. The adsorption of $Pb^{2+}$ on both adsorbents was caused by surface complexation and ion exchange mechanisms, both of which have similar effects on adsorption process regardless of the amount of adsorbed $Pb^{2+}$. The dependence of $Pb^{2+}$ adsorption upon pH was also similar for both adsorbents indicating the existence of similar functional groups on the surface of adsorbents. However, a different $Pb^{2+}$ adsorption behavior was observed considering the adsorption kinetics. The adsorption kinetic of $Pb^{2+}$ on alginate beads was slower than on alginate capsules and the maximum adsorption loading ($Q_{max}$) onto alginate beads was also less than onto alginate capsules by 49%. This drawback of alginate beads compared to capsules were ascribed to a diffusion limitation due to solid gel-core structure of alginate beads.

Development of Chemiluminescence Immunoassay(CIA) & ELISA for the Detection of Anti-sperm Antibodies in Male Serum (항정자 항체 검출을 위한 CIA 및 ELISA 개발을 위한 기초 연구)

  • Kim, S.C.;Lee, K.S.;Kim, Y.K.;Kim, C.K.;Choi, K.H.;Kwon, O.J.;Kim, J.B.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 1990
  • New immunoassay systems for the detection of anti-sperm antibodies were developed. For this, sperm surface protein was purified by the immunoaffinity column prepared by the coupling of rabbit anti-human IgG antibodies to Sepharose-4B. Fraction eluted by tris-HCI buffer containing SDS showed a single band having molecular weight of about 60KD on electrophoresis. Enzyme HRP labelled goat anti-human IgG and chemiluminescence aminobutylethyl-isoluminol(ABEI) labelled rabbit anti-human IgG were used for ELISA and CIA, respectively. These two labelled conjugate bound well with human IgG. When serum dilution curves were made to titrate positive serums, two kinds of curves with steep and sluggish slopes were obtained Serum samples were categorized into 3 groups: positive, weak positive and negative based on slope of curve and O.D. values at 1:160 dilution of serum. When ELISA and CIA were compared to conventional method Kibrick test by the determinations of 62 male serums with different diagnosis, the results of ELISA and CIA agreed well, but both disagreed with that of Kibrick test. This study showed that purified sperm surface antigen can be used to develope solid-phase immunoassay systems such as ELISA and CIA which may eliminate the problems encounted the immobilization of living sperm in other tests.

  • PDF

A Comparative Analysis between 3D Geological Modeling and Magnetic Data of Fe-Mn Ore in Ugii Nuur, Mongolia (몽골 우기누르 철-망간 부존 지역의 3차원 지질모델과 자력탐사 결과의 비교분석)

  • Lee, Jeong-a;Yu, Jaehyung;Park, Gyesoon;Lee, Bum han;Kim, In-Joon;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.313-324
    • /
    • 2015
  • This study constructed a 3D geological model for Uggi Nuur Fe-Mn mineralization zone in Mongolia, and the 3D geological distribution is cross-analyzed with magnetic anomaly distribution to figure out relationship between ore zone and subsurface geology. As a result of 4 step 3D modeling procedures including geological cross section, surface modeling, foliation modeling and solid modeling, the geology of the both study area is bordered by faults in NW direction with Munguntessj formation being located in the west side of the fault while Yashill formation is located on the other side of the fault. Moreover, the strike direction of foliation in the both formation shows same directional pattern with the NW faults. The magnetic anomaly distribution reveals that higher anomaly values are concentrated to near the ground surface. The analyses of 3 dimensional distribution between subsurface geology and magnetic anomaly indicates that higher anomaly is mainly distributed over the Munguntessj formation as a elongated lens bodies whereas the magnetic anomaly is evenly found in the both of Munguntessj formation and Yashill formation in the study area 2. It infers that volcanic activities associated mineralization occurred during silurian period, and the mineralized zone is thought to be realigned along the geological structures caused by later stage tectonic activities.

Studies on the Michael Addition Reaction between Secondary Amino Groups on the Silica Surface with Poly(ethylene glycol) Diacrylates (실리카 나노입자 표면에 결합된 2차 아미노기와 Poly(ethylene glycol) Diacrylate의 마이클 부가반응에 대한 연구)

  • Jeon, Ha Na;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.822-830
    • /
    • 2012
  • We used dipodal type bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify silica nanoparticles to introduce secondary amino groups on the silica surface. These N-H groups were reacted with three different molecular weights (M.W. = 258, 575, and 700) of poly(ethylene glycol) diacrylates to introduce different attached layer thicknesses on the silica surface by Michael addition reaction. After Michael addition reaction, we used several analytical techniques such as fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state $^{13}C$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy to characterize introduced structures. We found almost complete Michael addition reaction of both two acrylate groups of PDGDA with N-H groups of BTMA modified silica to form ${\beta}$-amino acid esters. Between equimolar ratio of pure BTMA and pure PEGDA reaction, only one acrylate group of two acrylate groups of PEGDA reacted with N-H groups of pure BTMA to form ${\beta}$-amino acid ester and the other remaining acrylate group can be used to form a polymer later.

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

Optimization of LC-MS/MS for the Analysis of Sulfamethoxazole by using Response Surface Analysis (반응표면분석법을 이용한 설파메톡사졸의 액체크로마토그래프-텐덤형 질량분석 최적화)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.825-830
    • /
    • 2009
  • Pharmaceutical compounds enter the water environment through the diverse pathways. Because their concentration in the water environment was frequently detected in the level of ppt to ppb, the monitoring system should be optimized as much as possible for finding appropriate management policies and technical solutions. One Factor At a Time (OFAT) approach approximating the response with a single variable has been preferred for the optimization of LC-MS/MS operational conditions. However, it is common that variables in analytical instruments are interdependent. Therefore, the best condition could be found by using the statistical optimization method changing multiple variables at a time. In this research, response surface analysis (RSA) was applied to the LC-MS/MS analysis of emerging antibiotic compound, sulfamethoxazole, for the best sensitivity. In the screening test, fragmentation energy and collision voltage were selected as independent variables. They were changed simultaneously for the statistical optimization and a polynomial equation was fit to the data set. The correlation coefficient, $R^2$ valuerepresented 0.9947 and the error between the predicted and observed value showed only 3.41% at the random condition, fragmentation energy of 60 and collision voltage of 17 eV. Therefore, it was concluded that the model derived by RSA successfully predict the response. The optimal conditions identified by the model were fragmentation energy of 116.6 and collision voltage of 10.9 eV. This RSA can be extensively utilized for optimizing conditions of solid-phase extraction and liquid chromatography.

A Study on Low-Temperature Oxidation Reactivity of Pt/ZrO2·SO42-Catalyst (ZrO2·SO42-에 담지된 백금촉매의 저온산화반응성에 대한 연구)

  • Kim, Kiseok;Lee, Tae Jung;Kim, Byoung Sam;Kim, Du Soung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.141-148
    • /
    • 1998
  • Reactivity of Pt catalysts(0.2, 0.5 wt% Pt) supported on solid super acid, $ZrO_2$ $SO_4{^{2-}}$ for low-temperature oxidation was investigated for complete oxidation of cyclohexane. Catalytic activity measured as reactant conversion in a packed-bed tubular reactor increased in accordance with the acidity and specific surface area of the catalyst activity and specific surface area of $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst were diminished by adding potassium during catalyst preparation. the catalyst activity decreased in accordance with the amount of potassium added. In addition, $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst exhibited an activity greater than that of a $Pt/SiO_2$ or $Pt/Al_2O_3$ catalyst possessing much larger specific surface area at $250^{\circ}C$ for the reactant stream of 15.000 ppm cyclohexane concentration and $18,000hr^{-1}$ space velocity, a cyclohexane conversion as high as 96% was obtained over 0.2 wt% $Pt/ZrO_2$ $SO_4{^{2-}}$, whereas cyclohexane conversions over 0.2 wt% $Pt/SiO_2$ and 0.2 wt% $Pt/Al_2O_3$ were 83 and 79%, respectively.

  • PDF