• Title/Summary/Keyword: Solid surface

Search Result 2,428, Processing Time 0.03 seconds

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

Search for Dormant Comets in the Infrared Asteroidal Catalog

  • Kim, Yoonyoung;Ishiguro, Masateru;Usui, Fumihiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.67.2-67.2
    • /
    • 2014
  • Comet nucleus is a solid body consisting of dark dust grains and ice. Cometary volatiles sublimate from subsurface layer by solar heating, leaving behind large dust grains on the surface. Eventually, the appearance could turn into asteroidal rather than cometary. It is, therefore, expected that there would be "dormant comets" in the list of known asteroids. Our research group has undertaken the research on the population of dormant comets. We applied a brand-new asteroidal catalog compiled from data garnered by three infrared astronomical observatories, AKARI, IRAS and WISE. We extracted objects which have comet-like orbits on the basis of their orbital properties (Tisserand parameters with respect to Jupiter, TJ, and aphelion distance, Q). We found that (1) there are a considerable number (>100) of asteroids in comet-like orbits, and (2) 80% of them have low albedo consistent with comets. This result suggest that these low albedo objects could be dormant comets. One unanticipated finding is that 20% of asteroids in comet-like orbit have high albedo similar to S-type asteroids. It is difficult to explain the population of S-type asteroids in comet-like orbits by the classical mechanics theory. We further found that these high-albedo objects are small (D < 2 km) bodies distributed in near-Earth space. We suggest that such high-albedo, small, near-Earth asteroids are susceptible to Yarkovsky effect and injected into comet-like orbits.

  • PDF

Effect of Fluoroethylene Carbonate in the Electrolyte for LiNi0.5Mn1.5O4 Cathode in Lithium-ion Batteries

  • Kim, Jaemin;Go, Nakgyu;Kang, Hyunchul;Tron, Artur;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Fluoroethylene carbonate (FEC) was studied as an additive for the electrolyte in lithium ion batteries with the $LiNi_{0.5}Mn_{1.5}O_4$ (LNMO) spinel cathode operating at a high potential beyond 4.7 V (vs. $Li/Li^+$). It was found that the FEC additive was electrochemically active for the $1^{st}$ charge cycle on the LNMO cathode. The presence of a large amount of FEC (more than 40 vol%) in the electrolyte caused severe side reactions with abnormally long voltage plateaus. In contrast, when the electrolyte contained less than 30 vol% FEC, the surface of the LNMO cathode was stabilized by the formation of the solid-electrolyte interphase (SEI), leading to improved cyclability. However, the resistance from the SEI limited the rate capability because of sluggish lithium transportation through the SEI and electronic insulation between the particles in the electrode.

Fabrication of Co-Planar Type Single Chamber SOFC with Patterned Electrodes (패턴된 전극을 가진 표면 전도형 단실형 고체산화물 연료전지의 제조)

  • Ahn, Sung-Jin;Kim, Yong-Bum;Moon, Joo-Ho;Lee, Jong-Ho;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.798-804
    • /
    • 2006
  • Co-planar type single chamber solid oxide fuel cell with patterned electrode on a surface of electrolyte has been fabricated by robo-dispensing method and microfluidic lithography. The cells were composed of NiO-GDC-Pd or NiO-SDC cermet anode, $(La_{0.7}Sr_{0.3})_{0.95}MnO_3$ cathode, and yttria stablized zirconia electrolyte. The cell performance at $900^{\circ}C$ was investigated as a function of electrode geometries, such as anode-to-cathode distance, numbers of electrode pairs. Relationship between OCV and I-V characteristics at the optimized operation condition was also studied by DC source meter under the mixed gas condition of methane, air, and nitrogen. An increase of anode-facing-cathode area leads to lower OCV due to intermixing between product gases of anode and cathode, which in turn decreases the oxygen partial pressure difference.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

Modeling and Simulation on Ion Implanted and Annealed Indium Distribution in Silicon Using Low Energy Bombardment (낮은 에너지로 실리콘에 이온 주입된 분포와 열처리된 인듐의 거동에 관한 시뮬레이션과 모델링)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.750-758
    • /
    • 2016
  • For the channel doping of shallow junction and retrograde well formation in CMOS, indium can be implanted in silicon. The retrograde doping profiles can serve the needs of channel engineering in deep MOS devices for punch-through suppression and threshold voltage control. Indium is heavier element than B, $BF_2$ and Ga ions. It also has low coefficient of diffusion at high temperatures. Indium ions can be cause the erode of wafer surface during the implantation process due to sputtering. For the ultra shallow junction, indium ions can be implanted for p-doping in silicon. UT-MARLOWE and SRIM as Monte carlo ion-implant models have been developed for indium implantation into single crystal and amorphous silicon, respectively. An analytical tool was used to carry out for the annealing process from the extracted simulation data. For the 1D (one-dimensional) and 2D (two-dimensional) diffused profiles, the analytical model is also developed a simulation program with $C^{{+}{+}}$ code. It is very useful to simulate the indium profiles in implanted and annealed silicon autonomously. The fundamental ion-solid interactions and sputtering effects of ion implantation are discussed and explained using SRIM and T-dyn programs. The exact control of indium doping profiles can be suggested as a future technology for the extreme shallow junction in the fabrication process of integrated circuits.

Sulfuric Acid Leaching of Manganese from Ferromanganese Dust (황산에 의한 페로망간 집진분 중의 망간 침출)

  • Park, Suji;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.24-30
    • /
    • 2015
  • The sulfuric acid leaching of ferromanganese dust was studied. The effect of acid concentration, reaction temperature, stirring rate, particle size and solid to liquid ratio on Mn and Fe extraction in the solution were investigated. It was found that the leaching rate of Mn and Fe increased with increasing reaction temperature and sulfuric acid concentration. Examination of data by shrinking core model suggested that the leaching rate is controlled by chemical reaction at the surface of particle. The activation energy for the leaching reaction of Mn and Fe were calculated to be 79.55 kJ/mol and 77.48 kJ/mol, respectively.

Preparation of Diamond Thin film for Electric Device and Crystalline Growth (전자 디바이스용 다이아몬드 박막의 제조 및 결정성장 특성)

  • Kim, Gru-Sik;Park, Soo-Gil;Son, Won-Keun;Fujishiama, Akira
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1720-1723
    • /
    • 2000
  • Boron doped conducting diamond thin film were grown on Si substrate by microwave plasma chemical vapor deposition from a gaseous feed of hydrogen, acetone/methanol and solid boron. The doping level of boron was controlled from 0ppm to $10^4$ppm (B/C). The Si substrate was tilted ca. 10$^{\circ}$ to make Si substrate have different height and temperature. Experimental results show that same condition but different temperature of Si substrate by height made different crystalline of diamond thin film. There were appeared 3$\sim$4 step of different crystalline morphology of diamond. To characterize the boron-doped diamond thin film, Raman spectroscopy was used for identification of crystallinity. To survey surface morphology, microscope was used. Grain size was changed gradually by different temperature due to different height. The Raman spectrum of film exhibited a sharp peak at 1334$cm^{-1}$, which is characteristic of crystalline diamond. The lower position of diamond film position, the more non-diamond component peak appeared near 1550$cm^{-1}$.

  • PDF

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Reheating Process of Metal Matrix Composite for Thixoforming (Thixoforming을 위한 금속복합재료의 재가열 공정)

  • 안성수;강충길;조형호
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.19-32
    • /
    • 2000
  • The fabrication process of particulate metal matrix composites(PMMCs) with homogeneous distribution of reinforcement and reheating for thixoforming has been studied. Both of eletro-magnetic stirring and mechanical stirring were used to fabricate particulate metal matrix composites(PMMCs) for variation of particle size. The electrical and mechanical processing conditions for fabricating PMMCs are also suggested. For thixoforming of PMMCs, fabricated bi1lets are reheated by using the designed optimal coil with as function of length between PMMC billet and coil surface, and coil diameter and billet. The effect of reinforcement distribution according to variation of billet temperature were investigated with solid fraction theory with a function of matrix alloy and volume fraction of reinforcement.

  • PDF