Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.1.53

Effect of Fluoroethylene Carbonate in the Electrolyte for LiNi0.5Mn1.5O4 Cathode in Lithium-ion Batteries  

Kim, Jaemin (Department of Energy and Chemical Engineering, Incheon National University)
Go, Nakgyu (Department of Energy and Chemical Engineering, Incheon National University)
Kang, Hyunchul (Department of Energy and Chemical Engineering, Incheon National University)
Tron, Artur (Department of Energy and Chemical Engineering, Incheon National University)
Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.1, 2017 , pp. 53-60 More about this Journal
Abstract
Fluoroethylene carbonate (FEC) was studied as an additive for the electrolyte in lithium ion batteries with the $LiNi_{0.5}Mn_{1.5}O_4$ (LNMO) spinel cathode operating at a high potential beyond 4.7 V (vs. $Li/Li^+$). It was found that the FEC additive was electrochemically active for the $1^{st}$ charge cycle on the LNMO cathode. The presence of a large amount of FEC (more than 40 vol%) in the electrolyte caused severe side reactions with abnormally long voltage plateaus. In contrast, when the electrolyte contained less than 30 vol% FEC, the surface of the LNMO cathode was stabilized by the formation of the solid-electrolyte interphase (SEI), leading to improved cyclability. However, the resistance from the SEI limited the rate capability because of sluggish lithium transportation through the SEI and electronic insulation between the particles in the electrode.
Keywords
LNMO; Electrolyte; High potential electrode; FEC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Pieczonka, Z. Liu, P. Lu, L. Olson, J. Moote, R. Powell and J. Kim, J. Phys. Chem. C, 2013, 117, 15947-15957.   DOI
2 H. Wu, V. Rao and B. Rambabu, Mater. Chem. Phys., 2009, 116, 532-535.   DOI
3 J. Kim, A. Huq, M. Chi, W. Pieczonka, E. Lee, A. Bridges, M. Tessema, A. Manthiram, A. Persson, and R. Powell, Chem. Mat., 2014, 26, 4377-4386.   DOI
4 Y. Kang, T. Yoon, S. Lee, J. Mun, M. Park, J. Park, S. Doo, I. Song and S. Oh, Electrochem. Commun., 2013, 27, 26-28.   DOI
5 J. Mun, J. Lee, T. Hwang, J. Lee, H. Noh and W. Choi, J. Electroanal. Chem., 2015, 745, 8-13.   DOI
6 T. Yoon, S. Park, J. Mun, J. Ryu, W. Choi, Y. Kang, J. Park, and S. Oh, J. Power Sources, 2012, 215, 312-316.   DOI
7 J. Mun, T. Yim, K. Park, J. Ryu, Y. Kim and S. Oh, J. Electrochem. Soc., 2011, 158, A453-A457.   DOI
8 Y. Lee, J. Mun, D. Kim, J. Lee and W. Choi, Electrochim. Acta, 2014, 115, 326-331.   DOI
9 S. Dalavi, M. Xu, B. Knight and L. Lucht, Electrochem. Solid-State Lett., 2011, 15, A28-A31.   DOI
10 K. Xu, Chem. Rev., 2014, 114, 11503-11618.   DOI
11 Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, C. Redfern, A. Curtiss and K. Amine, Energ. Environ. Sci., 2013, 6, 1806-1810.   DOI
12 Y. Zhu, D. Casselman, Y. Li, A. Wei and P. Abraham, J. Power Sources, 2014, 246, 184-191.   DOI
13 Y. Song, C. Kim, K. Kim, S. Hong and N. Choi, J. Power Sources, 2016, 302, 22-30.   DOI
14 L. Hu, Z. Zhang and K. Amine, Electrochem. Commun., 2013, 35, 76-79.   DOI
15 J. Mun, T. Yim, J. Park, J. Ryu, S. Lee, Y. Kim and S. Oh, Sci. Rep., 2014, 4, 5802-5807   DOI
16 H. Kim, S. Jung, S. Sim, T. Yoon, J. Mun, J. Ryu and S. Oh, Electrochem. Commun., 2015, 58, 25-28.   DOI
17 Y. Kang, T. Yoon, J. Mun, M. Park, I. Song, A. Benayad and S. Oh, J. Mater. Chem. A, 2014, 2, 14628-14633.   DOI
18 M. Thackeray, C. Wolverton and D. Isaacs, Energ Environ Sci., 2012, 5, 7854-7863.   DOI
19 Z. Yang, J. Zhang, W. Kintner-Meyer, X. Lu, D. Choi, P. Lemmon and J. Liu, Chem. Rev., 2011, 111, 3577-3613.   DOI
20 S. Lim, H. Chu, K. Lee, T. Yim, Y. Kim, J. Mun and T. Kim, ACS Appl. Mater. Interfaces, 2015, 7, 23545-23553.   DOI
21 J. Hassoun, J. Kim, D. Lee, H. Jung, S. Lee, Y. Sun and B. Scrosati, J. Power Sources, 2012, 202, 308-313.   DOI
22 J. Mun and J. Ryu, Bull. Korean Chem. Soc., 2016, 37, 48-51.   DOI
23 G. Binotto, D. Larcher, S. Prakash, H. Urbina, S. Hegde and M. Tarascon, Chem. Mat., 2007, 19, 3032-3040.   DOI
24 J. Woo, E. Trevey, S. Cavanagh, Y. Choi, S. Kim, M. George, K. Oh and S. Lee, J. Electrochem. Soc., 2012, 159, A1120-A1124.   DOI
25 E. Trask, Z. Pupek, A. Gilbert, M. Klett, J. Polzin, N. Jansen and P. Abraham, J. Electrochem. Soc., 2016, 163, A345-A350.   DOI
26 M. Holzapfel, H. Buqa, J. Hardwick, M. Hahn, A. Wursig, W. Scheifele, P. Novak, R. Kotz, C. Veit, and M. Petrat, Electrochim. Acta, 2006, 52, 973-978.   DOI
27 A. Hubaud, Z. Yang, J. Schroeder, F. Dogan, L. Trahey and T. Vaughey, J. Power Sources, 2015, 282, 639-644.   DOI
28 C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström and T. Gustafsson, Chem. Mat., 2015, 27, 2591-2599.   DOI
29 N. Choi, K. Yew, K. Lee, M. Sung, H. Kim and S. Kim, J. Power Sources, 2006, 161, 1254-1259.   DOI