DOI QR코드

DOI QR Code

Effect of Fluoroethylene Carbonate in the Electrolyte for LiNi0.5Mn1.5O4 Cathode in Lithium-ion Batteries

  • Kim, Jaemin (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Go, Nakgyu (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Kang, Hyunchul (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Tron, Artur (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
  • Received : 2016.11.14
  • Accepted : 2017.01.16
  • Published : 2017.03.31

Abstract

Fluoroethylene carbonate (FEC) was studied as an additive for the electrolyte in lithium ion batteries with the $LiNi_{0.5}Mn_{1.5}O_4$ (LNMO) spinel cathode operating at a high potential beyond 4.7 V (vs. $Li/Li^+$). It was found that the FEC additive was electrochemically active for the $1^{st}$ charge cycle on the LNMO cathode. The presence of a large amount of FEC (more than 40 vol%) in the electrolyte caused severe side reactions with abnormally long voltage plateaus. In contrast, when the electrolyte contained less than 30 vol% FEC, the surface of the LNMO cathode was stabilized by the formation of the solid-electrolyte interphase (SEI), leading to improved cyclability. However, the resistance from the SEI limited the rate capability because of sluggish lithium transportation through the SEI and electronic insulation between the particles in the electrode.

Keywords

References

  1. M. Thackeray, C. Wolverton and D. Isaacs, Energ Environ Sci., 2012, 5, 7854-7863. https://doi.org/10.1039/c2ee21892e
  2. Z. Yang, J. Zhang, W. Kintner-Meyer, X. Lu, D. Choi, P. Lemmon and J. Liu, Chem. Rev., 2011, 111, 3577-3613. https://doi.org/10.1021/cr100290v
  3. S. Lim, H. Chu, K. Lee, T. Yim, Y. Kim, J. Mun and T. Kim, ACS Appl. Mater. Interfaces, 2015, 7, 23545-23553. https://doi.org/10.1021/acsami.5b06682
  4. J. Hassoun, J. Kim, D. Lee, H. Jung, S. Lee, Y. Sun and B. Scrosati, J. Power Sources, 2012, 202, 308-313. https://doi.org/10.1016/j.jpowsour.2011.11.060
  5. J. Mun and J. Ryu, Bull. Korean Chem. Soc., 2016, 37, 48-51. https://doi.org/10.1002/bkcs.10620
  6. G. Binotto, D. Larcher, S. Prakash, H. Urbina, S. Hegde and M. Tarascon, Chem. Mat., 2007, 19, 3032-3040. https://doi.org/10.1021/cm070048c
  7. J. Woo, E. Trevey, S. Cavanagh, Y. Choi, S. Kim, M. George, K. Oh and S. Lee, J. Electrochem. Soc., 2012, 159, A1120-A1124. https://doi.org/10.1149/2.085207jes
  8. M. Holzapfel, H. Buqa, J. Hardwick, M. Hahn, A. Wursig, W. Scheifele, P. Novak, R. Kotz, C. Veit, and M. Petrat, Electrochim. Acta, 2006, 52, 973-978. https://doi.org/10.1016/j.electacta.2006.06.034
  9. A. Hubaud, Z. Yang, J. Schroeder, F. Dogan, L. Trahey and T. Vaughey, J. Power Sources, 2015, 282, 639-644. https://doi.org/10.1016/j.jpowsour.2015.02.006
  10. C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström and T. Gustafsson, Chem. Mat., 2015, 27, 2591-2599. https://doi.org/10.1021/acs.chemmater.5b00339
  11. N. Choi, K. Yew, K. Lee, M. Sung, H. Kim and S. Kim, J. Power Sources, 2006, 161, 1254-1259. https://doi.org/10.1016/j.jpowsour.2006.05.049
  12. E. Trask, Z. Pupek, A. Gilbert, M. Klett, J. Polzin, N. Jansen and P. Abraham, J. Electrochem. Soc., 2016, 163, A345-A350. https://doi.org/10.1149/2.0981602jes
  13. Y. Kang, T. Yoon, S. Lee, J. Mun, M. Park, J. Park, S. Doo, I. Song and S. Oh, Electrochem. Commun., 2013, 27, 26-28. https://doi.org/10.1016/j.elecom.2012.10.029
  14. J. Mun, J. Lee, T. Hwang, J. Lee, H. Noh and W. Choi, J. Electroanal. Chem., 2015, 745, 8-13. https://doi.org/10.1016/j.jelechem.2015.02.034
  15. T. Yoon, S. Park, J. Mun, J. Ryu, W. Choi, Y. Kang, J. Park, and S. Oh, J. Power Sources, 2012, 215, 312-316. https://doi.org/10.1016/j.jpowsour.2012.04.103
  16. J. Mun, T. Yim, K. Park, J. Ryu, Y. Kim and S. Oh, J. Electrochem. Soc., 2011, 158, A453-A457. https://doi.org/10.1149/2.036111jes
  17. Y. Lee, J. Mun, D. Kim, J. Lee and W. Choi, Electrochim. Acta, 2014, 115, 326-331. https://doi.org/10.1016/j.electacta.2013.10.127
  18. S. Dalavi, M. Xu, B. Knight and L. Lucht, Electrochem. Solid-State Lett., 2011, 15, A28-A31. https://doi.org/10.1149/2.015202esl
  19. K. Xu, Chem. Rev., 2014, 114, 11503-11618. https://doi.org/10.1021/cr500003w
  20. Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, C. Redfern, A. Curtiss and K. Amine, Energ. Environ. Sci., 2013, 6, 1806-1810. https://doi.org/10.1039/c3ee24414h
  21. Y. Zhu, D. Casselman, Y. Li, A. Wei and P. Abraham, J. Power Sources, 2014, 246, 184-191. https://doi.org/10.1016/j.jpowsour.2013.07.070
  22. Y. Song, C. Kim, K. Kim, S. Hong and N. Choi, J. Power Sources, 2016, 302, 22-30. https://doi.org/10.1016/j.jpowsour.2015.10.043
  23. L. Hu, Z. Zhang and K. Amine, Electrochem. Commun., 2013, 35, 76-79. https://doi.org/10.1016/j.elecom.2013.08.009
  24. J. Mun, T. Yim, J. Park, J. Ryu, S. Lee, Y. Kim and S. Oh, Sci. Rep., 2014, 4, 5802-5807 https://doi.org/10.1038/srep05802
  25. H. Kim, S. Jung, S. Sim, T. Yoon, J. Mun, J. Ryu and S. Oh, Electrochem. Commun., 2015, 58, 25-28. https://doi.org/10.1016/j.elecom.2015.05.019
  26. Y. Kang, T. Yoon, J. Mun, M. Park, I. Song, A. Benayad and S. Oh, J. Mater. Chem. A, 2014, 2, 14628-14633. https://doi.org/10.1039/C4TA01891E
  27. W. Pieczonka, Z. Liu, P. Lu, L. Olson, J. Moote, R. Powell and J. Kim, J. Phys. Chem. C, 2013, 117, 15947-15957. https://doi.org/10.1021/jp405158m
  28. H. Wu, V. Rao and B. Rambabu, Mater. Chem. Phys., 2009, 116, 532-535. https://doi.org/10.1016/j.matchemphys.2009.04.028
  29. J. Kim, A. Huq, M. Chi, W. Pieczonka, E. Lee, A. Bridges, M. Tessema, A. Manthiram, A. Persson, and R. Powell, Chem. Mat., 2014, 26, 4377-4386. https://doi.org/10.1021/cm501203r