• Title/Summary/Keyword: Solid surface

Search Result 2,428, Processing Time 0.024 seconds

Optical Cap Sensor for Magneto-Optic Near-Field Recording (MO 근접장 기록을 위한 광학 갭 센서)

  • Yoon, Yong-Joong;Park, Jae-Hyuk;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • This paper proposes a new method of measuring an air interface distance between a solid immersion lens(SIL) applied magneto-optic technology and the disk surface. For applying near-field recording (NFR) technology to the magneto-optic storage devices for the next generation, it is positively necessary to maintain the small air gap under about 100㎚. We design an apparatus that consists of some optical components such as a prism, a polarizer and an analyzer. By using the Fresnel reflection coefficient equation, Jones matrices calculation and Malus's law, we establish a mathematical model for understanding the characteristics of the system. The simulations are based on the mathematical model and through the simulation results which is made with various cases we can estimate the performance of the new optical gap sensor system. Experimental results, which are also based on the mathematical model for specific cases, are in good agreement with simulated ones and demonstrate the possibility as the new optical gap sensor.

Investigation on the Turbulence Structure of Reattaching Separated Shear Layer Past a Two-Dimensional Vetrical Fenc(I) (2次元 垂直壁을 지니는 再附着 剝離 斷層 의 亂流構造 에 관한 硏究 (I))

  • 김경천;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 1985
  • Hot-wire measurements of second and third-order mean products of velocity fluctuations have been made in the separated, reattached, and redeveloping boundary layer behind a vertical fence. Mean velocity, wall static pressure distributions have also been measured in the whole flow field. Upstream of the reattachment point, the separated shear layer developes as a free mixing layer, but the gradient of the maximum slope thickness, turbulent intensities and the Reynolds shear stress are higher than that of the mixing layer due to initial streamline curvature and the effects of highly turbulent recirculating flow region. In the reattachment region, Reynolds shear stress and triple products near the surface is far more rapid than the decrease of the shear stress; that is the presence of the solid wall has a marked effect on the apparent gradient diffusivity of intensity or shear stress and throws doubts upon the usefulness of the simple gradient diffusivity model in this region.

Ultrasonic Images Enhancement of the SS Reference Specimen and the Reference Calibration Block for NPPs by the Combining Bases of Support for Spatial Frequency (공간주파수대역에서 기저대역 확장을 통한 원전 대비시험편과 대비 보정 시험편의 초음파 영상 개선)

  • Park, Chi-Seung;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.651-657
    • /
    • 2003
  • Ultrasonic microscope has been used to detect the defects on surface or inner solid. Conventionally, it has used at a single operating frequency. The resolution and quality of the measured images are determined by a characteristic of the transducer of the ultrasonic microscope. The conventional ultrasonic microscope has been used envelope detector to detect the amplitude of reflected signal, but the changes in amplitude is not sensitive enough for specimen with microstructure that in phase. In this paper, we have studied multi-frequency depth resolution enhancement with ultrasonic reflection microscope for the reflectors of a stainless steel reference specimen and a reference calibration block to be used as the material in nuclear power plants for ISI, PSI. Increased depth resolution can be obtained by taking two, three-dimensional images at more that one frequency and numerically combining the results. As results of the experiment, we could get enhanced images with the rate of contrast in proportion and high quality signal distribution for the image to the changing rate of depth for the reflectors of the two kinds of specimens.

Characteristics of Patterns on Art-Walls as an Imagery Element in Contemporary Living Spaces (국내 공동주거 공간 이미지 요소로서의 아트월 패턴 연구)

  • Park, Young-Soon;Kim, Seong-Ah;Kim, Eun-Jung;Lim, Sun-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.86-94
    • /
    • 2010
  • Art-Wall is the term for a surface wall representing artistic expression by using different materials or images in interior spaces. Usually this is the focal point in an interior space and sometimes it called as an image wall. In the new millenium Art-walls began to use in living spaces. While in the early stages of the development, Art-Wall was limited in a living room, in contemporary it spread into overall living spaces using various patterns and materials. Therefore, the research on Art-Walls in contemporary living spaces is essential to understand this development. The purpose of this study is to find out characteristics of patterns on Art-Walls as an imagery element in contemporary interior spaces. To analyze the characteristic, the analysis table for Art-Walls are constructed based on classifications of wallpapers and textiles. Based on this analysis table, 89 examples of Art-Walls from four major periodicals from 2008 to 2009 were examined. As a result of the analysis, in contemporary interior spaces solid-texture pattern is most frequently appeared. Then natural motifs are the next most popular using oversized or irregular layouts. The result shows that naturalistic expression is significant in interior space in 2008 to 2009. Therefore, Art-Walls that adapted diverse patterns are an essential element in contemporary interiors to represent the major concept of the space.

Charge/discharge Properties As a Function of Synthetic Conditions of $LiMnO_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 합성조건에 따른 충방전 특성)

  • Cho, Young-Jai;Kim, Jong-Uk;Park, Gye-Choon;Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic $LiMnO_2$ was synthesized by solid-state reaction using $LiOH{\cdot}H_{2}O$ and $Mn_{2}O_{3}$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diiffraction revealed that the $LiMnO_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of $LiMnO_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications. the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of $160-170mAhg^{-1}$ for $LiMnO_2/Li$ cell was achieved.

  • PDF

Cover Layer Design and Temperature Analysis in Pseudo NFR System Using SIL Head (SIL 헤드유사 근접장 시스템 개발을 위한 보호막 설계 및 열해석)

  • Kim Kyungho;Kim Sookyung;Lee Sung-Q;Park Kang-Ho;Lee Seung-Yop
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.58-66
    • /
    • 2005
  • Pseudo-Near Field Recording (Pseudo-NFR) system is proposed to prevent contamination and oxidation of media surface occurred in conventional NFR systems. To solve these critical problems of the NFR systems, we investigate the optimal thickness of cover layer for Pseudo NFR. This paper presents the theoretical analysis for cover layer thickness based on the measured length of dust particle and numerical simulation for the temperature distribution using Finite Difference Time Domain (FDTD) method and heat conduction equation. To verify the simulation results, we conduct and compare simulation results in case of far field MO recording and near field MO recording. A measured dust particle length in general environment was mostly less than $20{\mu}m$, and the optimal thickness of cover layer is $30{\mu}m$ in this case. Based on the designed optimal cover layer thickness, temperature distribution is simulated to have $800{\~}850^{\circ}C$.

  • PDF

Bacterial Effects on Geochemical Behavior of Elements : An Overview on Recent Geomicrobiological Issues (원소의 지구화학적 거동에 미치는 박테리아의 영향 : 지구미생물학의 최근 연구 동향)

  • 이종운;전효택
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.353-365
    • /
    • 2000
  • After their first appearance on Earth, bacteria have exerted significant influence on geochemical behavior of elements. Numerous evidence of their control on geochemistry through geologic history has been observed in a variety of natural environments. They have mediated weathering rate, formation of secondary minerals, redox transformation of metals and metalloids, and thus global cycling of elements. Such ability of bacteria receives so considerable attention from microbiologists, mineralogists, geologists, soil scientists, limnologists, oceanographers, and atmospheric scientists as well as geochemists that a new and interdisciplinary field of research called 'geomicrobiology' is currently expanding. Some recent subjects of geomicrobiology which are studied extensively are as follows: 1) Functional groups distributed on bacterial cell walls adsorb dissolved cations onto cell surfaces by electrostatic surface complexation, which is followed by hydrous mineral formation. 2) Dissimilatory metal reducing bacteria conserve energy to support growth by oxidation of organic matter coupled to reduction of some oxidized metals and/or metalloids. They can be effectively used in remediating environments contaminated with U, As, Se, and Cr. 3) Bacteria increase the rate of mineral dissolution by excreting proton and ligands such as organic acids into aqueous system. 4) Thorough investigation on the effects of biofilm on geochemical processes is needed, because most bacteria are adsorbed on solid substrates and form biofilms in natural settings.

  • PDF

Effect of a Series Connection of a Bi-Electrolyte Hydrogen Sensor in a Leak Detector

  • Han, Hyeuk Jin;Park, Chong Ook;Hong, Youngkyu;Kim, Jong Suk;Yang, Jeong Woo;Kim, Yoon Seo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.6-9
    • /
    • 2015
  • Conventional leak detectors are widely based on helium gas sensors. However, the usage of hydrogen sensors in leak detectors has increased because of the high prices of helium leak detectors and the dearth in the supply of helium gas. In this study, a hydrogen leak detector was developed using solid-state hydrogen sensors. The hydrogen sensors are based on Park-Rapp probes with heterojunctions made by oxygen-ion conducting Yttria-stabilized zirconia and proton-conducting In-doped $CaZrO_3$. The hydrogen sensors were used for determining the potential difference between air and air balanced 5 ppm of $H_2$. Even though the Park-Rapp probe shows an excellent selectivity for hydrogen, the sensitivity of the sensor was low because of the low concentration of hydrogen, and the oxygen on the surface of the sensor. In order to increase the sensitivity of the sensor, the sensors were connected in series by Pt wires to increase the potential difference. The sensors were tested at temperatures ranging from $500-600^{\circ}C$.

Effect of Powder Morphology on the Deposition Quality for Direct Laser Melting (Direct Laser Melting 공정시 분말 형태가 적층 품질에 미치는 영향)

  • Lee, S.H.;Kil, T.D.;Han, S.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • Direct laser melting(DLM) is an additive manufacturing process that can produce parts by solidification of molten metallic powder layer by layer. The properties of the fabricated parts strongly depend on characteristics of the metallic powder. Atomized powders having spherical morphology have commonly been used for DLM. Mechanical ball-milling is a powder processing technique that can provide non-spherical solid powders without melting. The aim of the current study was to investigate the effect of powder morphologies on the deposition quality in DLM. To characterize the morphological effect, the performances of spherical and non-spherical powders were compared using both single- and multi-track DLM experiments. DLM experiments were performed with various laser process parameters such as laser power and scan rate, and the deposition quality was evaluated. The surface roughness, cross-section bead shape and process defects such as balling or non-filled area were compared and discussed in this study.

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.