• Title/Summary/Keyword: Solid state reaction

Search Result 846, Processing Time 0.022 seconds

Asymmetry Ratio and Emission Properties of YVO4:Eu3+ Red Phosphors Synthesized by Solid-state Reaction Method (고상법으로 합성한 YVO4:Eu3+ 적색 형광체의 비대칭비와 발광 특성)

  • Jang, Jae-Young;Ahn, Se-Hyeok;Bang, Jun-Hyuk;Ma, Kwon-Do;Kim, Choon-Soo;Cho, Shin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.298-303
    • /
    • 2012
  • $Y_{1-x}VO_4:Eu_x^{3+}$ red phosphors were synthesized with changing the mol ratios of $Eu^{3+}$ ions by using the solid-state reaction method. The crystalline structure of phosphors was found to be a tetragonal system with the maximum diffraction intensity at $25.02^{\circ}$. The grain particles showed the truncated hexagonal patterns with a very homogeneous size distribution at 0.05 mol of $Eu^{3+}$ ion. The excitation spectra of the phosphor ceramics were composed of a broad band centered at 303 nm and weak narrow multilines peaked in the range of 360-420 nm. The dominant emission spectrum was the strong red emission centered at 619 nm due to the $^5D_0{\rightarrow}^7F_2$ electric dipole transition. The experimental results suggest that the optimum doping mol ratio of $Eu^{3+}$ ions for preparing the red phosphors is 0.10 mol with the asymmetry ratio of 5.21.

Synthesis of BaSrSiO4 Phosphors by Solid State Reaction and Its Luminescent Properties (고상법에 의한 BaSrSiO4 형광체의 분말합성 및 발광특성)

  • Kang, Joo Young;Won, Hyeong Il;Hayk, Nersisyan;Won, Chang Whan
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.727-731
    • /
    • 2013
  • In this study, green barium strontium silicate phosphor ($BaSrSiO_4:Eu^{3+}$, $Eu^{2+}$) was synthesized using a solid-state reaction method in air and reducing atmosphere. Investigation of the firing temperature indicates that a single phase of $BaSrSiO_4$ is formed when the firing temperature is higher than $1400^{\circ}C$. The effect of firing temperature and doping concentration on luminescent properties are investigated. The light-emitting property was the best when the molar content of $Eu_2O_3$ was 0.025 mol. Also, the luminescent brightness of the $BaSrSiO_4$ fluorescent substance was the best when the particle size of the barium was $0.5{\mu}m$. $BaSrSiO_4$ phosphors exhibit the typical green luminescent properties of $Eu^{3+}$ and $Eu^{2+}$. The characteristics of the synthesized $BaSrSiO_4:Eu^{3+}$, $Eu^{2+}$ phosphor were investigated using X-ray diffraction (XRD) and scanning electron microscopy. The maximum emission band of the $BaSrSiO_4:Eu^{3+}$, $Eu^{2+}$ was 520 nm.

Effects of Metal Ion Mole Ratio and Calcination Temperatures on Magnetic Properties and Microstructure of Ba2Co2Fe12O22 Powders Synthesized by Solid State Reaction (고상반응법으로 제조된 Ba2Co2Fe12O22분말의 자기적 성질과 미세구조에 미치는 금속이온몰비와 열처리 온도의 영향)

  • Cho, Kwang-Muk;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.216-221
    • /
    • 2009
  • Y-type barium ferrite $Ba_2Co_2Fe_{12}O_{22}$ was synthesized by a solid state reaction method. Effects of metal ion mole ratio and calcination temperatures on magnetic properties and microstructures of the synthesized powders were investigated. Phase analysis and microstructure observation were performed with a XRD (X-ray diffractometer) and a FESEM (field effect scanning electron microscope), respectively. Magnetic properties of the powders were measured with a VSM (vibrating sample magnetometer). Single phase Y-type was synthesized when metal ion mole fraction $Fe^{3+}:\;Ba^{2+}:\;Co^{2+}$ was 6 : 1 : 1 and calcination temperature was $1050\;{^{\circ}C}$. High saturation magnetization value of 39.1 emu/g was obtained when metal ion mole fraction $Fe^{3+}:\;Ba^{2+}:\;Co^{2+}$ was 8 : 1 : 1 and calcination temperature was $1200\;{^{\circ}C}$.

Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction (고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구)

  • Yoo, Hyeon-Hee;Nersisyan, Hayk;Won, Hyung-Il;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

Electrochemical Properties of $LiFePO_4$ and $LiM_xFe_{1-x}PO_4$ Cathode Materials for Lithium Polymer Batteries (리튬 폴리머 전지용 정극활물질 $LiFePO_4$$LiM_xFe_{1-x}PO_4$의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bo-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.133-133
    • /
    • 2009
  • Phospho-olivine $LiFePO_4$ and $LiTi_{0.1}Fe_{0.9}PO_4$ cathode materials were prepared by the solid-state reaction. To improve conductivity we carried out electrochemical performance of $Ti^{2+}$ doped $LiFePO_4$. The $Ti^{2+}$ doped $LiFePO_4$ started 3.36 V of flat voltage on discharge curve and showed a gentle decline in the curve compared to undoped $LiFePO_4$ without great changes of capacity. And so, we could achieve to improve electrochemical performance as reversible, cycle life. Similarly, $LiFePO_4$ doping with $Ti^{2+}$ was showed the effect of dopant which was obtained the improved discharge capacity as 140 mAh/g and good cycling performance.

  • PDF

Hydrogenation of Ethyl Acetate to Ethanol over Bimetallic Cu-Zn/SiO2 Catalysts Prepared by Means of Coprecipitation

  • Zhu, Ying-Ming;Shi, Xin Wang Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.141-146
    • /
    • 2014
  • A series of bimetallic Cu-Zn/$SiO_2$ catalysts were prepared via thermal decomposition of the as-synthesized $CuZn(OH)_4(H_2SiO_3)_2{\cdot}nH_2O$ hydroxides precursors. This highly dispersed Cu-solid base catalyst is extremely effective for hydrogenation of ethyl acetate to ethanol. The reduction and oxidation features of the precursors prepared by coprecipitation method and catalysts were extensively investigated by TGA, XRD, TPR and $N_2$-adsorption techniques. Catalytic activity by ethyl acetate hydrogenation of reaction temperatures between 120 and $300^{\circ}C$, different catalyst calcination and reduction temperatures, different Cu/Zn loadings have been examined extensively. The relation between the performance for hydrogenation of ethyl acetate and the structure of the Cu-solid base catalysts with Zn loading were discussed. The detected conversion of ethyl acetate reached 81.6% with a 93.8% selectivity of ethanol. This investigation of the Cu-Zn/$SiO_2$ catalyst provides a recently proposed pathway for ethyl acetate hydrogenation reaction to produce ethanol over Cu-solid base catalysts.

Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3

  • Jang, J. S.;Borse, P. H.;Lee, J. S.;Lim, K. T.;Jung, O. S.;Jeong, E. D.;Bae, J. S.;Kim, H. G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.95-99
    • /
    • 2011
  • $CaTi_{1-x}Fe_xO_3(0{\leq}x{\leq}0.4)$ solid solution photocatalysts were synthesized by iron doping during the conventional solid state reaction at $1100^{\circ}C$ for 5 h and characterized by ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction, morphological analysis. We found that $CaTi_{1-x}Fe_xO_3$ samples not only absorb UV but also the visible light photons. This is because the Fe substitution at Ti-site in $CaTi_{1-x}Fe_xO_3$ lattice induces the band transition from Fe3d to the Fe3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $CaTiO_3$ samples for hydrogen production under UV light irradiation decreased with the increase in the Fe concentration. There exists an optimized concentration of iron in $CaTiO_3$, which yields a maximum photocatalytic activity under visible light ($\lambda\geq420nm$) photons.

Synthesis and characterization of Y2O3 : Eu3+ red nano phosphor powders using RF thermal plasma (RF 열플라즈마를 이용한 Y2O3:Eu3+ 적색 나노 형광체 분말 합성)

  • Lee, Seung-Yong;Koo, Sang-Man;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.272-279
    • /
    • 2015
  • $Y_2O_3:Eu^{3+}$ is an excellent red-emitting phosphor, which has been widely used for display devices due to highly luminescent property and chemical stability. In this study, $Y_2O_3:Eu^{3+}$ red phosphors were prepared using the solid state reaction and RF thermal plasma synthesis. The particle size of $Y_2O_3:Eu^{3+}$ phosphors obtained by the solid state reaction varied from 10 to $20{\mu}m$, and 30~100 nanometer sized $Y_2O_3:Eu^{3+}$ particles were obtained from a liquid form of raw material through RF thermal plasma synthesis without an additional heat treatment. Photoluminescence measurements of the obtained $Y_2O_3:Eu^{3+}$ particles showed a red emission peak at 611 nm ($^5D_0{\rightarrow}^7F_2$). PL intensity of red nano phosphors prepared by RF thermal plasma synthesis was comparable to that of red phosphors prepared by the solid state reaction, indicating that nano-sized $Y_2O_3:Eu^{3+}$ red phosphors could be successfully synthesized using one-step process of RF thermal plasma.

Electrochemical Properties of Spinel LiMn2O4 Prepared Through Different Synthesis Routes (스피넬형 양극활물질 LiMn2O4의 합성방법에 따른 전기화학적 특성 비교)

  • Lee, Ki-Soo;Bang, Hyun-Joo;Sun, Yang-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.48-51
    • /
    • 2007
  • In order to investigate the effects of particle size and specific surface area(BET area) of spinel powder, $LiMn_2O_4$ were synthesized using metal oxide precursor by co-precipitation method(CoP) and solid state reaction (SSR) .X-ray diffraction(XRD) patterns revealed that the both prepared powder has a well developed spinel structure with Fd3m space group. The $LiMn_2O_4$ prepared by co-precipitation showed spherical morphology with narrow size distribution. However, the $LiMn_2O_4$ prepared by solid state reaction showed relatively smaller particles with irregular shape. The measured BET areas of the powers are $0.8m^2g^{-1}$ (CoP) and $3.6m^2g^{-1}$(SSR). The electrochemical performance of the Prepared $LiMn_2O_4$ powders was evaluated using coin type cells(CR2032) at elevated temperature ($55^{\circ}C$). The $LiMn_2O_4$ prepared by co-precipitation showed the better cycling performance(82.3%capacity retention at $50^{th}$ cycle) than that of the $LiMn_2O_4$(68.3%) prepared by solid state reaction at elevated temperature.

In-situ Fourier Transform Infrared Spectroscopic Study during Thermolysis of Trimethylaluminum and its Adduct (Trimethylaluminum (TMA), $NH_3$ 및 TMA :$NH_3$Adduct의 열분해 반응에 대한 in-situ FTIR 분광학적 연구)

  • Hyang Sook Kim;Seong Han Kim;Jin Soo Hwang;Joong Gill Choi;Paul Joe Chong
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.995-1002
    • /
    • 1993
  • The thermal decomposition of trimethylaluminum (TMA) with ammonia has been investigated by in-situ Fourier transform infrared spectroscopy. The spectroscopic reaction cell, which permits heating interna lly up to 1100$^{\circ}C$, consists of stainless-steel hexagonal-port chamber containing two NaCl windows installed in parallel. In this work, the stoichiometric reaction between TMA and $NH_3$ is found to be completed immediately after mixing. FTIR spectra observed in the range of temperature 25∼1100$^{\circ}C$ show that TMA and TMA : $NH_3$ adduct decompose into methane as a predominant product around 500$^{\circ}C$. The assignments of the IR bands due to the gaseous TMA, $NH_3$ and TMA : $NH_3$ adduct are attempted on the basis of the published data. Furthermore, the decomposition of TMA can be described as a first-order reaction. Kinetic data about the decompositon of TMA and TMA : $NH_3$adduct will also be discussed.

  • PDF