Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.4.298

Asymmetry Ratio and Emission Properties of YVO4:Eu3+ Red Phosphors Synthesized by Solid-state Reaction Method  

Jang, Jae-Young (Busan Science High School)
Ahn, Se-Hyeok (Busan Science High School)
Bang, Jun-Hyuk (Busan Science High School)
Ma, Kwon-Do (Busan Science High School)
Kim, Choon-Soo (Busan Science High School)
Cho, Shin-Ho (Department of Materials Science and Engineering, Silla University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.4, 2012 , pp. 298-303 More about this Journal
Abstract
$Y_{1-x}VO_4:Eu_x^{3+}$ red phosphors were synthesized with changing the mol ratios of $Eu^{3+}$ ions by using the solid-state reaction method. The crystalline structure of phosphors was found to be a tetragonal system with the maximum diffraction intensity at $25.02^{\circ}$. The grain particles showed the truncated hexagonal patterns with a very homogeneous size distribution at 0.05 mol of $Eu^{3+}$ ion. The excitation spectra of the phosphor ceramics were composed of a broad band centered at 303 nm and weak narrow multilines peaked in the range of 360-420 nm. The dominant emission spectrum was the strong red emission centered at 619 nm due to the $^5D_0{\rightarrow}^7F_2$ electric dipole transition. The experimental results suggest that the optimum doping mol ratio of $Eu^{3+}$ ions for preparing the red phosphors is 0.10 mol with the asymmetry ratio of 5.21.
Keywords
Red phosphor; $YVO_4:Eu$; Solid-state reaction; Asymmetry ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagayev, T. H. Chyba, J. C. Barnes, T. Murai, and J. Lu, Laser Phys., 11, 1124 (2001).
2 W. J. Park, M. K. Jung, and D. H. Yoon, Sensor. Actuat., B126, 324 (2007).
3 X. Xiao, G. Lu, S. Shen, D. Mao, Y. Guo, and Y. Wang, Mater. Sci. Eng., B176, 72 (2011).
4 H. Y. Chen, M. H. Weng, S. J. Chang, and R. Y. Yang, Ceram. Int., 38, 125 (2012).   DOI   ScienceOn
5 D. W. Kim and S. S. Yi, Sae Mulli, 56, 518 (2008).
6 F. W. Kang, Y. H. Hu, H. Y. Wu, and G. F. Ju, Chin. Phys. Lett. 28, 107201 (2011).   DOI   ScienceOn
7 L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, J. Lumin. 122-123, 36 (2007).   DOI
8 J. Zhang, Y. Wang, Z. Zhang, Z. Wang, and B. Liu, Mater. Lett., 62, 202 (2008).   DOI   ScienceOn
9 M. Nazarov and D. Y. Noh, J. Rare Earth., 28, 1 (2010).
10 D. S. Jo, Y. Y. Luo, K. Senthil, T. Masaki, and D. H. Yoon, Opt. Mater., 33, 1190 (2011).   DOI   ScienceOn
11 X. Yang, X. Dong, J. Wang, and G. Liu, Mater. Lett., 63, 629 (2009).   DOI   ScienceOn
12 W. Di, X. Zhao, S. Lu, X. Wang, and H. Zhao, J. Solid State Chem. 180, 2478 (2007).   DOI   ScienceOn
13 X. Su, B. Yan, and H. Huang, J. Alloys Compd., 399, 251 (2005).   DOI
14 W. Jadwisienczak, K. Wisniewski, M. Spencer, T. Thomas, and D. Ingram, Radiat. Meas., 45, 500 (2010).   DOI   ScienceOn
15 V. Natarajan, A. R. Dhobale, and C. H. Lu, J. Lumin., 129, 290 (2009).   DOI   ScienceOn
16 J. H. Lee, B. C. Ahn, S. B. Jun, and D. K. Lee, J. Korean Oil Chemists' Soc., 23, 207 (2006).