• Title/Summary/Keyword: Solid state laser

Search Result 152, Processing Time 0.029 seconds

Strain-induced enhancement of thermal stability of Ag metallization with Ni/Ag multi-layer structure

  • Son, Jun-Ho;Song, Yang-Hui;Kim, Beom-Jun;Lee, Jong-Ram
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.157-157
    • /
    • 2010
  • Vertical-structure light-emitting diodes (V-LEDs) by laser lift-off (LLO) have been exploited for high-efficiency GaN-based LEDs of solid-state lightings. In V-LEDs, emitted light from active regions is reflected-up from reflective ohmic contacts on p-GaN. Therefore, silver (Ag) is very suitable for reflective contacts due to its high reflectance (>95%) and surface plasmon coupling to visible light emissions. In addition, low contact resistivity has been obtained from Ag-based ohmic contacts annealed in oxygen ambient. However, annealing in oxygen ambient causes Ag to be oxidized and/or agglomerated, leading to degradation in both electrical and optical properties. Therefore, preventing Ag from oxidation and/or agglomeration is a key aspect for high-performance V-LEDs. In this work, we demonstrate the enhanced thermal stability of Ag-based Ohmic contact to p-GaN by reducing the thermal compressive stress. The thermal compressive stress due to the large difference in CTE between GaN ($5.6{\times}10^{-6}/^{\circ}C$) and Ag ($18.9{\times}10^{-6}/^{\circ}C$) accelerate the diffusion of Ag atoms, leading to Ag agglomeration. Therefore, by increasing the additional residual tensile stress in Ag film, the thermal compressive stress could be reduced, resulting in the enhancement of Ag agglomeration resistance. We employ the thin Ni layer in Ag film to form Ni/Ag mutli-layer structure, because the lattice constant of NiO ($4.176\;{\AA}$ is larger than that of Ag ($4.086\;{\AA}$). High-resolution symmetric and asymmetric X-ray diffraction was used to measure the in-plane strain of Ag films. Due to the expansion of lattice constant by oxidation of Ni into NiO layer, Ag layer in Ni/Ag multi-layer structure was tensilely strained after annealing. Based on experimental results, it could be concluded that the reduction of thermal compressive stress by additional tensile stress in Ag film plays a critical role to enhance the thermal stability of Ag-based Ohmic contact to p-GaN.

  • PDF

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.

Synthesis, Structural Characterization and Thermal Behaviour of Block Copolymers of Aminopropyl-Terminated Polydimethylsiloxane and Polyamide Having Trichlorogermyl Pendant Group (Aminopropyl-Terminated Polydimethylsiloxane과 Trichlorogermyl 곁가지 그룹을 갖는 Polyamide 블록공중합체의 합성, 구조분석 및 열적거동)

  • Gill, Rohama;Mazhar, M.;Mahboob, Sumera;Siddiq, Muhammad
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • Block copolymers of the general formula $[(-CO-R'-CO-HN-Ar-NH-CO-R'-CO)_xNH(CH_2)_3-(Me_2SiO)_y(CH_2)_3NH_2]_n$, [n=18.00 to 1175.0] where $R'=CH_2CH(CH_2GeCl_3)$;$CH_2CHGeCl_3CH_2$; and $Ar=-C_6H_4$;$-(o.CH_3C_6H_4)_2$;$-o.CH_3OC_6H_4)_2$;$-(o.CH_3C_6H_4)$ were prepared by a polycondensation reaction of polyamide containing a pendant trichlorogermyl group and terminal acid chloride $Cl(-CO-R'-CO-NH-Ar-NH-CO-R'-CO-)_xCl$ with aminopropyl-terminated polydimethylsiloxane $H_2N(CH_2)_3(Me_2SiO)_y-(CH_2)_3NH_2]$, (PDMS). These polymers were characterized by elemental analysis, $T_g$, FT-IR, $^1H$-NMR, solid state $^{13}C$-NMR, and molecular weight determination. The thermal stability of these copolymers was examined using thermal analysis techniques, such as TGA and DSC. Their molecular weights as determined by laser light scattering technique ranged $5.13{\times}10^5$ to $331{\times}10^5\;g/mol$. These polymers display their $T_g$ in the range of 337 to $393^{\circ}C$ with an average decomposition temperature at $582^{\circ}C$.

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Azimuthal Angle Scan Distribution, Third Order Response, and Optical Limiting Threshold of the Bismarck Brown Y:PMMA Film

  • Fadhil Abass Tuma;Hussain Ali Badran;Harith Abdulrazzaq Hasan;Riyadh Chassib Abul-Hail
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.721-731
    • /
    • 2023
  • This paper studies various roughness parameters, besides waviness, texture, and nonlinear parameters of Bismarck brown Y (BBY)-doped Poly(methyl methacrylate) (PMMA) films based on the computed values of optical limiting (OL) threshold power and nonlinear refractive index. The films' morphology, grain size, and absorption spectra were investigated using atomic force microscopy in conjunction with ultraviolet-visible (UV-Vis) spectrophotometer. The particle size of the films ranged between 4.11-4.51 mm and polymer films showed good homogeneity and medium roughness, ranging from 1.11-4.58 mm. A polymer film's third-order nonlinear optical features were carried out using the Z-scan methodology. The measurements were obtained by a continuous wave produced from a solid-state laser with a 532 nm wavelength. According to the results, BBY has a nonlinear refractive index of 10-6 cm2/W that is significantly negative and nonlinear. The optical limiting thresholds are roughly 10.29, 13.52, and 18.71 mW, respectively. The shift of nonlinear optical features with the film's concentration was found throughout the experiment Additionally, we found that the polymer samples have outstanding capabilities for restricting the amount of optical power that may be transmitted through them. We propose that these films have the potential to be used in a wide variety of optoelectronic applications, including optical photodetectors and optical switching.

Differences in Structural Characteristics and Eu(III) Complexation for Molecular Size Fractionated Humic Acid (분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물 반응 특성 비교에 대한 연구)

  • Shin, Hyun-Sang;Rhee, Dong-Seok;Kang, Kihoon
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-166
    • /
    • 2001
  • A humic acid(HA, Aldrich Co) sample was subjected to ultrafiltration for molecular size fractionation and three fractions of different nominal size($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons) were obtained. The structural characteristics of the size-fractionated HA were analyzed using their IR and solid state C-13 NMR spectral data, and the carboxylate group contents of the humic acids were determined using their pH titration data. The $^7F_0-{^5}D_0$ excitation spectra of Eu(III) complexes of the size-fractionated mgHA in aqueous solution were acquired($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$) at pH 5.0 using a pulsed tunable laser system, in which metal binding properties of the size-fractionated HA were elucidated and compared on another. Characterization of the IR and C-13 NMR spectral data indicated that the fraction($F_3$) with molecules of larger size were primarily aliphatic, while the fractions($F_1$, $F_2$) with smaller molecules of less than 50,000 daltons were predominantly aromatic. Titration data were consistent with an increase in the number of carboxylate groups per unit mass as molecular size became smaller. The $^7F_0-{^5}D_0$ excitation spectral data of Eu(III)-humate complexes showed that the peak maxima on these spectra were shifted toward lower energies with increasing molecular size of HA, indicating the higher degree of bindings of the Eu in the molecules of larger size. We also discussed the relationship of the lower energy shifts of the maximum peaks with increasing the molecular size of HA with the structural differences of the size-fractionated HA.

  • PDF

Improved Physical Properties of Ni-doped $BiFeO_3$ Ceramic

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.250-250
    • /
    • 2012
  • Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Fe_3O_4$ and NiO powders were mixed with the stoichiometric proportions, and calcined at $450^{\circ}C$ for 24 h to produce $BiFe_{1-x}Ni_xO_3$. Then, the samples were directly put into the oven, which was heated up to $800^{\circ}C$ and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-{\mu}m$ diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. $BiFe_{0.95}Ni_{0.05}O_3$ exhibits the rhombohedral perovskite structure R3c, similar to $BiFeO_3$. The lattice constant of $BiFe_{0.95}Ni_{0.05}O_3$ is smaller than of $BiFeO_3$ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of $BiFe_{0.95}Ni_{0.05}O_3$ exhibits a clear hysteresis loop at 300 K. The magnetic properties of $BiFe_{0.95}Ni_{0.05}O_3$ were improved at room temperature because of the existence of structurally compressive stress.

  • PDF

A Study on the Luminescence Properties of Eu3+ Ions Doped Vanadate (Eu3+ 이온이 첨가된 바나듐산염의 형광특성 연구)

  • Kang, Yeonhee;Yoon, Changyong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.445-451
    • /
    • 2019
  • The fluorescence intensity and fluorescence lifetime of $Ba_2GdV_3O_{11}$, a vanadate compound based on $Ba^{2+}$ ion, were investigated by adding $Eu^{3+}$ as a rare earth ion which is an alkaline earth metal, which is distributed around active ions and has a large influence on fluorescent properties when used as a host in a phosphor. $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor was synthesized by solid state method and the crystallinity of the phosphor was confirmed by X - ray diffraction analysis. The fluorescence properties of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor were measured using optical and laser. The energy transfer and diffusion of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor are highly dependent on the concentration of $Eu^{3+}$. When the concentration of $Eu^{3+}$ is low, it shows strong fluorescence to the CT band. However, as the concentration of $Eu^{3+}$ increases, the fluorescence due to 4f - 4f transition is strong. The concentration of $Eu^{3+}$ ion increased and the energy between ions was diffused, and the lifetime of fluorescence decreased. Energy transfer occurs between two $Eu^{3+}$ ions at low $Eu^{3+}$ concentration and energy diffusion occurs at high $Eu^{3+}$ concentration.

Luminescence Characteristics of (Y0.85-xYb0.15)3Ga5O12:Er3+x Phosphors ((Y0.85-xYb0.15)3Ga5O12:Er3+x 형광체의 형광특성)

  • Chung, Jong Won;Yi, Soung Soo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1308-1314
    • /
    • 2018
  • $Er^{3+}$ and $Yb^{3+}$ co-doped $Y_3Ga_5O_{12}$ polycrystalline powders were prepared by using a solid-state reaction method, and their crystallinities were measured using X-ray diffraction. According to the results of X-ray diffraction, the powders showed a polycrystalline tetragonal structure. The photoluminescence and the upconversion luminescence properties of the $(Y_{0.85-x}Yb_{0.15})_3Ga_5O_{12}:Er^{3+}_x$ (x = 0.03, 0.06, 0.09, 0.12 and 0.15) phosphors were investigated in detail. Green and red upconversion emissions were observed for the phosphors excited by 980 nm radiation from a semiconductor laser. The powders exhibited strong green and weak red upconversion emission peaks at 553 and 660 nm, respectively. Also, their upconversion processes were explained using an energy-diagram analysis and the strongest upconversion intensity was emitted by the powder with a 0.12 mol $Er^{3+}$ ion concentration.