• Title/Summary/Keyword: Solid solutions

Search Result 608, Processing Time 0.028 seconds

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Phase and microstructure of hot-pressed SiC-AlN solid solutions (열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조)

  • Chang-Sung Lim;Chang-Sam Kim;Deock-Soo Cheong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.238-246
    • /
    • 1996
  • High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

  • PDF

Flow Properties of Red Flower Cabbage Pigment Solutions (꽃양배추 색소 추출액의 유동특성)

  • Rhim, Jong-Whan;Lee, Jung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.221-225
    • /
    • 2001
  • Flow properties of red flower cabbage pigment solutions were determined over a wide range of temperatures ($20-50^{\circ}C$) and soluble solid concentrations (1-65%) using a cone and plate rotational viscometer. Flow properties of the pigment solutions were adequately described by the simple power law model. Within the tested ranges of concentration, temperature and shear rate, the flow behavior index (n) and the consistency index (K) of the solutions were in the ranges of 0.841-0.998 and $0.008-31.525\;Pa{\cdot}s^n$, respectively. The effect of temperature on the apparent viscosity of the solutions followed an Arrhenius type relationship. Activation energy of flow varied from 9.36 to 52.48 kJ/mol depending on the solid concentration and shear rate. The combined effect of temperature and concentration on the apparent viscosity at the shear rate of $100\;s^{-1}$ could be represented by a single equation as ${\ln}\;{\eta}_a\;=\;6.11\;-\;3103.94(1/T)\;-\;0.03C$.

  • PDF

Design and comparative study of various Two-Dimensional Grain Configurations based on Optimization Method

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.226-234
    • /
    • 2008
  • Grain design has always been a vital and integral part of Solid Rocket Motor(SRM) design. Basing on the design objectives set by the system designer, the SRM designer has many options available for selecting the Grain configuration. Many of the available configurations may fulfill the required parameters of volumetric loading fraction, web fraction & Length to diameter ratios and produce internal ballistic results that may be in accordance to the design objectives. However, for any given set of design objectives, it is deemed necessary that best possible configuration be selected, designed and optimized. Hence optimal results of all applicable configurations are vital to be attained in order to compare and finalize the design that will produce most efficient performance. Generally the engineers pay attention and have skills on a specific grain configuration. The designing methodologies and computer codes available usually focus on single grain configuration may it be Star, Wagon Wheel or slotted tube. Hardly one can find a software or a design methodology where all such configurations can be worked on jointly and not only adequate designs be found but optimal solutions reached by applying an optimization method to find final design best suited for any design objective. In the present work design requirements have been set, grain configurations have been selected and their designing has been conducted. The internal ballistic parameters have been calculated and after finding the preliminary design solutions, the optimal solutions have been found. In doing so, software has been developed comprising of computer programs for designing the 2D grains including Star, Wagon Wheel and Slotted Tube configurations. The optimization toolbox of Matlab Fmincon has been used for getting optimal solutions. The affects of all the independent geometric design variables on the optimized solutions have been analyzed. Based on results attained from Optimization Method, an in depth comparison of Grain Configurations and analysis of performance prediction outputs have been conducted to come to conclusion as to which grain configuration is ideal for the current design requirement under study.

  • PDF

Electrical Conductivity of the Solid Solutions X $ZrO_2+ (1-X) Yb_2O_3; 0.01{\leq}X{\leq}0.09$

  • Choi Byoung Ki;Jang Joon Ho;Kim, Seong Han;Kim, Hong Seok;Park, Jong Sik;Kim Yoo Young;Kim, Don;Lee Sung Han;Yo Chul Hyun;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 1992
  • $ZrO_2-dopedYb_2O_3solid$ solutions containing 1, 3, 5, 7 and 9 mol% $ZrO_2were$ synthesized from spectroscopically pure $Yb_2O_3$ and $ZrO_2$ powders and found to be rare earth C-type structure by XRD technique. Electrical conductivities were measured as a function of temperatures from 700 to $1050^{\circ}C$ and oxygen partial pressures from 1${\times}$$10^-5$ to 2${\times}$ $10^-1$atm. The electrical conductivities depend simply on temperature and the activation energies are determined to be 1.56-1.68 $_eV$. The oxygen partial pressure dependence of the electrical conductivity shows that the conductivity increases with increasing oxygen partial pressure, indicating p-type semiconductor. The $PO_2$ dependence of the system is nearly power of 1/4. It is suggested from the linearity of the temperature dependence of electrical conductivity and only one value of 1/n that the solid solutions of the system have single conduction mechanism. From these results, it is concluded that the main defects of the system are negatively doubly charged oxygen interstitial in low. $ZrO_2doping$ level and negatively triply charged cation vacancy in high doping level and the electrical conduction is due to the electronic hole formed by the defect structure.

A comprehensive optimization model for integrated solid waste management system: A case study

  • Paul, Koushik;Chattopadhyay, Subhasish;Dutta, Amit;Krishna, Akhouri P.;Ray, Subhabrata
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.220-237
    • /
    • 2019
  • Solid waste management (SWM) is one of the poorly rendered services in developing countries - limited resources, increasing population, rapid urbanization and application of outdated systems leads to inefficiency. Lack of proper planning and inadequate data regarding solid waste generation and collection compound the SWM problem. Decision makers need to formulate solutions that consider multiple goals and strategies. Given the large number of available options for SWM and the inter-relationships among these options, identifying SWM strategies that satisfy economic or environmental objectives is a complex task. The paper develops a mathematical model for a municipal Integrated SWM system, taking into account waste generation rates, composition, transportation modes, processing techniques, revenues from waste processing, simulating waste management as closely as possible. The constraints include those linking waste flows and mass balance, processing plants capacity, landfill capacity, transport vehicle capacity and number of trips. The linear programming model integrating different functional elements was solved by LINGO optimization software and various possible waste management options were considered during analysis. The model thus serves as decision support tool to evaluate various waste management alternatives and obtain the least-cost combination of technologies for handling, treatment and disposal of solid waste.

Decision-making of sustainable municipal solid waste management based on the SWOT analysis: A case study of Gurugram City, Haryana (India)

  • Suman Chauhan;Sandeep
    • Advances in environmental research
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • In developing countries, solid waste is typically disposed of inappropriately, which has a negative impact on the environment and healthcare. One of the most serious environmental issues is the management of municipal solid waste because of the huge increase in waste generation brought on by industrialization, economic development, urbanization, and the exponential growth of Gurugram City's population. Municipal Corporation Gurugram (MCG) handles solid waste collection, transportation, and disposal. The city generates over 1100 tons of solid waste per day. In consideration of this, the current study employed the strengths, weaknesses, opportunities, and threats framework called SWOT analysis to critically examine the city's current methods for the management of municipal solid waste to provide more effective policy solutions. For conducting the analysis, the questionnaires and other interviews were conducted to gather information from households and officials in the city, and the observation made during field visits were recorded. The analysis shows that the waste management issue is getting worse for a variety of causes, including a lack of regulatory enforcement, insufficient technical and financial resources, insufficient people's participation, inadequate execution of policies, a lack of political priorities, and poor coordination between authorities.

Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7La3Zr2O12 Solid Electrolytes

  • Ahmed Tarif;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.408-418
    • /
    • 2023
  • In this study, we synthesized and characterized garnet-type Li7-xAlxLa3Zr2-(5/4)yNbyO12 (LALZN) solid electrolytes for all-solid-state battery applications. Our novel approach focused on enhancing ionic conductivity, which is crucial for battery efficiency. A systematic examination found that co-doping with Al and Nb significantly improved this conductivity. Al3+ and Nb5+ ions were incorporated at Li+ and Zr4+ sites, respectively. This doping resulted in LALZN electrolytes with optimized properties, most notably enhanced ionic conductivity. An optimized mixture with 0.25 mol each of Al and Nb dopants achieved a peak conductivity of 1.32 × 10-4 S cm-1. We fabricated symmetric cells using these electrolytes and observed excellent charge-discharge profiles and remarkable cycling longevity, demonstrating the potential for long-term application in battery systems. The garnet-type LALZN solid electrolytes, with their high ionic conductivity and stability, show great potential for enhancing the performance of all-solid-state batteries. This study not only advances the understanding of effective doping strategies but also underscores the practical applicability of the LALZN system in modern energy storage solutions.

Vibration Behavior of a Rotating Brush Roll in Contact with a Solid Roll (강체롤과 접촉 회전하는 브러시롤의 진동 현상)

  • 허주호
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.499-509
    • /
    • 1997
  • During the process of oxide removal from work rolls in sheet metal manufacture, filamentary brushes frequently exhibit a bouncing or chatter behavior. The dynamics of this phenomenon is investigated through the development of expressions for the non-linear contact stiffness between the brush and the roll. With formulation of simple structural models, the time responses in the presence and absence of friction under random excitation are investigated. Possible solutions for the minimization or avoidance of this bouncing or chatter problem are also suggested.

  • PDF

Physical Properties of Diopside-$Al_2O_3$ Solid Solution (Diopside-$Al_2O_3$ 고용체의 물성)

  • 안영필;김복희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.66-70
    • /
    • 1985
  • This study was to investigate physical properties of the system $Ca(Mg_{1-x}Al_x) (Si_{2-x}Al_x)O_6$ by quenching method. This system $\chi$=0.1 to 0.3 had same crystal phase microstructure and similar properties. Bulk density microhardness thermal expansion coefficient and modulus of rupture of these solid solutions were 2.87~2.95g/cm3 850~900kg/$mm^2$, $7.5~7.8{\times}10^{-6}$/$^{\circ}C$ and 1950~1980kg/$cm^2$ respectively.

  • PDF