• Title/Summary/Keyword: Solid separation efficiency

Search Result 119, Processing Time 0.022 seconds

Applicability of the Hydrocyclone for Efficiency Improvements to Sea-water Cooling Systems (해수 냉각시스템 효율 향상을 위한 하이드로사이클론의 적용가능성)

  • Kim Bu-Gi;Han Won-Hui;Cho Dae-Hwan;Choi Min-Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.109-115
    • /
    • 2004
  • Hydrocyclone has been widely used for the solid-liquid separation in many industrial sites because of its comparatively preferable applications that can be applied to wide-range particle sizes. If seawater with impurities flows through pumps or heat exchanger, it might cause an decrease in efficiency of cooling system. In this paper, we have suggested some methods of separating impurities from seawater in the cooling system by using a Hydrocyclone. The effects of design factors as solid concentration, cyclone inlet pressure, flow rate and diameter of underflow on the separating performance of the Hydrocyclone were investigated The results from this study are summarized as follows: 1) In proportion to the decrease of solid concentration, the efficiency of solid-liquid separation is improved 2) According as the cyclone inlet pressure increases the efficiency of separation is improved Conclusively, this research suggested that the Hydrocyclone will be used as a pre-treatment system of cooling water in machines, and eventually prevent unexpected accidents in engine systems.

  • PDF

Treatment of High Concentration Organic Wastewater with a Sequencing Batch Reactor (SBR) Process Combined with Electro-flotation as a Solids-liquid Separation Method

  • Choi, Younggyun;Park, Minjeong;Park, Mincheol;Kim, Sunghong
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.395-399
    • /
    • 2014
  • Operation characteristics of the sequencing batch reactor (SBR) process with electro-flotation (EF) as a solid liquid separation method (EF-SBR) were investigated. EF-SBR process showed excellent solid-liquid separation performance which enabled to separate biosolids from liquid phase within 30 min and to extend cyclic reaction time. Although influent organic loading rate was increased stepwise from 5 to 15 g COD/day, food to microorganisms (F/M) ratio could be maintained about 0.3 g COD/g VSS/day in EF-SBR because biomass concentration could be easily controlled at desired level by EF. However, it was impossible to increase biomass concentration at the same level in control SBR (C-SBR) process because solid-liquid separation by gravity settling showed a limitation at higher mixed liquor suspended solids (MLSS) concentration with 60 min of settling time. Total chemical oxygen demand (TCOD) removal efficiency of EF-SBR process was not decreased although influent organic loading rate became 3 times higher than initial value. However, it was seriously deteriorated in C-SBR process after increasing the rate over 10 g COD/day, which was accounted for insufficient organic removal by relatively higher food to microorganisms (F/M) ratio as well as biosolids wash-out by a limitation of gravity sedimentation.

Separation Performance of a Low-pressure Hydrocyclone for Suspended Solids in a Recirculating Aquaculture System

  • Lee, Jin-Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.150-156
    • /
    • 2010
  • The separation performance of a low-pressure hydrocyclone (LPH) was evaluated for suspended-solids removal in a recirculating aquaculture system (RAS). The dimensions of the LPH were 335 mm cylinder diameter, 575 mm cylinder height, 60 mm overflow diameter, 50 mm underflow diameter, and $68^{\circ}$ cone angle. The inflow rate varied (400, 600, 800, and 1,000 mL $s^{-1}$) with 25%, 25%, 20%, and 10% of bypass ($R_f$), respectively. The maximum total separation efficiency (Et) and reduced separation efficiency (E't) for suspended solids from the effluent of the second settlement tank (before biofiltration) were 58.9% and 45.2%, respectively, at an inflow rate of 600 mL $s^{-1}$ and 25% of $R_f$. The maximum Et and E't for suspended solids from the water supply channel (after biofiltration) were 24.4% and 16%, respectively, at an inflow rate of 1,000 mL $s^{-1}$ and 10% of $R_f$. The maximum grade efficiency (Ei) was 51.6% for a 300 ${\mu}m$ particle size at an inflow rate of 600 mL $s^{-1}$ with 23% of $R_f$. The maximum reduced grade efficiency (E'i) was 37.6% for a 300 ${\mu}m$ particle size at an inflow rate of 1,000 mL $s^{-1}$ with 11% of $R_f$. The results indicate that the separation performance of the LPH for suspended solids removal was size selective and that maximum removal occurred at particle sizes ranging from 300 to 500 ${\mu}m$.

Performance Analysis of a Hydrodynamic Separator for Treating Particulate Pollutants in Highway Rainfall Runoff

  • Yu, Jianghua;Yi, Qitao;Kim, Young-Chul
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.262-269
    • /
    • 2009
  • This study examined the separation characteristics of particles in the rainfall runoff from paved roads using a ${\varphi}7.5$ cm hydrocyclone. The volume fraction and total suspended solids concentrations in the overflow and underflow from the hydrocyclone, as well as the separation efficiency were determined. The results indicated that the overflow volume increased with increasing operational pressure, but decreased with decreasing ratio of underflow outlet to inlet sizes ($D_u/D_i$), while the underflow to overflow volumes showed contrary behavior. The total suspended solid (TSS) concentration ratio between the overflow and inflow ($TSS_{over/in}$) decreased as a function of the operational pressure, while the corresponding ratio of underflow to inflow ($TSS_{under/in}$) increased. There was no visible difference in the $TSS_{over/in}$ with increasing $D_u/D_i$ ratio, but the $TSS_{under/in}$ decreased sharply. The particle removal efficiency was mainly affected by the particle size.

Particle Separation and Flotation Efficiency by Dissolved Carbon Dioxide Flotation Process (용존이산화탄소부상(DCF) 공정의 입자분리 특성과 부상효율)

  • Kwak, Dong-Heui;Kim, Seong-Jin;Jung, Heung-Jo;Park, Yang-Kyun;Yoo, Young-Hoon;Lee, Young-Dong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • A series of laboratory experiments carried out to investigate the particle separation efficiency and flotation characteristics using $CO_2$ bubbles. The primary objective of this study was to find out the feasibility of $CO_2$ bubbles as an applicable unit of flotation process in tap-water and wastewater treatment plant. The fundamental measurements were conducted to characterize the $CO_2$ bubble from the physical viewpoint in water including bubble size distribution and rising velocity under various operational conditions. In addition, the removal efficiency of solid was experimented using the lab scale plant applied $CO_2$ bubbles, namely the dissolved carbon dioxide flotation (DCF) process. The DCF process using carbon dioxide bubble, which is an advantage as the decrease and the reuse of Green-House gas, can be a promising technology as an water treatment process. On the other hand, the further research to decrease the bubble size distribution of $CO_2$ is required to enhance the particle separation efficiency.

Evaluation on Flotation Efficiency of Bubble-floc Agglomerates and Operation Characteristics of Hydraulic Loading Rate Using Population Balance in DAF Process (DAF공정에서 개체군 수지를 이용한 기포-플록 응집체의 부상효율과 수리학적 부하율의 운전특성 평가)

  • Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.531-540
    • /
    • 2008
  • The main advantage of dissolved air flotation (DAF) in water treatment process is the small dimension compared with conventional gravity sedimentation and it can be basically reduced by the separation zone performed with the short solid-liquid separation time. Fine bubbles make such a short time possible to carry out solid from liquid separation as a collector on the course of water treatment. Therefore, the dimension of separation zone in DAF process is practically determined by the rise velocity of the bubble-floc agglomerates, which is a floc attached with several bubbles. To improve flotation velocity and particle removal efficiency in DAF process, many researchers have tried to attach bubbles as much as possible to flocs. Therefore, the maximum number of attached bubble on a floc and the rise velocity of bubble-floc agglomerates considered as the most important factor to design the separation zone of flotation tank in DAF process was simulated based on the population balance theory. According to the simulation results of this study, the size and volume concentration of bubble influenced on the possible number of attached bubble on a floc. The agglomerates attached with smaller bubble was more sensitive to hydraulic loading rate in the separation zone of DAF process. For the design of a high rate DAF process applied over surface loading 40 m/hr. it is required a precise further study on the variation of bubble property and behavior including in terms of bubble size distribution.

Development of Solid/Liquid Separation Technique for Krill (Eupausia superba) (남극 크릴새우의 고액분리 기술개발)

  • Oh, I.H.;Jang, C.H.;Kim, W.G.;Yang, S.Y.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2011
  • Economic development involves increase in life expectancy as well as human health care. Consequently, demand for fish meal and fish oil is rapidly growing. In particular, Krill (Eupausia superba) oil product is in high demand due to its rich unsaturated-fatty acid, and thus stable supplies are necessary in the krill oil market. It is required for captured krills to be immediately frozen and stored during ship transport, since proteins of the krill are quickly denatured in natural temperature condition. However, the transportation cost has been sharply increased, which encourages researchers to involve in studies for development of efficient oil extraction process. In this study, a solid/liquid separation technique on boat for the krill oil was developed through triple separation tests using only a separator or using either brush or crusher prior to the separator. The separation tests revealed that the efficiency were 46.2, 60.2 and 60.4 % by the separator, combination with brush, and combination with crusher, respectively. In addition, it was found that byproduct, extracted cake, derived from the separation process could be used as a feed stuff. These results suggest that smashing using the brush or crusher prior to the separator is more efficient than using only the separator.

A Study on the Treatment of Nutrients and Organic Carbon in Wastewater through Spatial Separation and Internal Recycling in a Modified Oxidation Ditch (격벽에 의한 조분리와 내부반송을 이용한 산화구 시설의 고도처리개선에 관한 연구)

  • Lee, Young-Shin;Oh, Dae-Min
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • This study was performed to assess the removal efficiency on nitrogen, phosphorus and organic carbon in wastewater by spatial separation and internal recycling in a modified oxidation ditch process (modified OD). The performances of the modified OD were evaluated via laboratory-scale experiments. The process was operated at hydraulic retention times of 6-48 hours and solid retention times of 17-38 days. We found that organic carbon removal efficiency increased after the modified OD operation period. T-N removal efficiency remained stable; average T-N concentration of effluent was 8.02 mg/l after modified OD operation. In contrast, T-P concentration of effluent was over 1 mg/l. Nitrogen and phosphorus removal efficiency of modified OD at HRT 12 hr were 83.1% and 74.1%, respectively. Also, maximum efficiency was found at SRTs from 20 to 30 days. T-N removal efficiency was 83.1% at a C/N ratio from 3.0 to 3.5. However, T-N removal efficiency decreased at C/N ratios over 3.5. Also, T-P removal efficiency increased with HRT at C/P ratios in the same condition. Maximum efficiency was 74.1% at a C/P ratio from 25 to 28. T-N removal efficiency was 79.2% and T-P removal efficiency was 65.3% after M4 mode operation (added to the internal recycle line connected to the anoxic reactor). The modified OD with spatial separation and internal recycling developed in this study is, therefore, believed to be an improvement for solving problems in the nutrient removal technologies.

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Kim, Sung-Wook;Heo, Dong Hyeon;Kang, Hyun Woo;Hong, Sun-Seok;Lee, Sang-Kwon;Jeon, Min Ku;Hur, Jin-Mok;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1866-1870
    • /
    • 2019
  • Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.

Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals (바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF