• Title/Summary/Keyword: Solid polymer electrolyte

Search Result 166, Processing Time 0.028 seconds

Recent Progress on Proton Exchange Membrane Based Water Electrolysis (수소이온 교환막 기반 수전해의 최근 연구 동향)

  • Yang, Seungmin;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.275-282
    • /
    • 2022
  • In contemporary days, hydrogen-based energies including batteries are renowned to be effective. And its effectiveness comes from the fact that it possesses high efficiency as an energy carrier. Eco-friendly and high purity of hydrogens comes out from water electrolysis. And among different types of electrolysis, proton exchange membrane (PEM) water electrolysis is considered the most renewable, cheap, and eco-friendly. It produces oxygen and hydrogens which are feasible in using as energies. Since it has such a number of benefits, increased research is going on in PEM electrolysis. Nafion is widely used as PEM, but high cost and various other disadvantages leads to the exploration of alternative materials. This review is broadly classified into Nafion and non Nafion based PEM for water electrolysis.

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl (KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선)

  • Yoo, Gi-Won;Shin, Mi-Ra;Shin, Tae-Myung;Hong, Tae-Whan;Kim, Hong-kyeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.

Characteristic of Electrical Conductivity in the $\textrm{CuO}-\textrm{Bi}_{2}\textrm{O}_3-\textrm{V}_2\textrm{O}_5$ Glass System with Various Compositions ($\textrm{CuO}-\textrm{Bi}_{2}\textrm{O}_3-\textrm{V}_2\textrm{O}_5$계 글라스에서 조성 변화에 따른 전기 전도도의 특성)

  • Park, S.S.;Jeong, D.J.;Lee, H.;Park, C.Y.;Min, S.K.;Park, H.C.
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1110-1114
    • /
    • 1998
  • The crystallization behaviors and electrical conductivities of the glasses heat-treated at various times and temperatures in the CuO-Bi$_2$O$_3$-V$_2$O$_{5}$ glass system were investigated. Among glass samples with various compositions, the highest conductivity obtained in the 31CuO-14Bi$_2$O$_3$-55V$_2$O$_{5}$ (mol%) glass sample. The 31CuO-14Bi$_2$O$_3$-55V$_2$O$_{5}$ (mol%) glass sample crystallized by heat treatment at 358$^{\circ}C$ for 8h had 2.67$\times$10$^{-2}$ $\Omega$$^{-1}$ $cm^{-1}$ /, which was much high value as a solid electrolyte. Compared to the glass sample, the heat- treated glass sample was increased in conductivity by an order of 10$^3$-10$^4$due to the formation and growth of BiVO$_4$ and CuVO$_3$crystals.

  • PDF

Synthesis of Organized $TiO_2$ Electrodes Using Graft Copolymer and Their Applications to Dye-Sensitized Solar Cells (가지형 공중합체를 이용한 나노구조 $TiO_2$ 제조 및 염료감응 태양전지 응용)

  • Ahn, Sung Hoon;Koh, Joo Hwan;Park, Jung Tae;Kim, Jong Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • The morphology of mesoporous $TiO_2$ films plays an important role in the operation of a DSSC. For example, the energy conversion efficiency of DSSCs with well-organized mesoporous $TiO_2$ films is much higher than those with traditional films possessing a random morphology. In previous research, well-organized mesoporous $TiO_2$ films have mainly been synthesized using an amphiphilic block copolymer, e.g., a poly(ethylene oxide) (PEO)-based template. A graft copolymer is more attractive than a block copolymer due to its low cost and the ease with which it can be synthesized. In this work, we provide the first report on the successful synthesis of well-organized mesoporous $TiO_2$ films templated by an organized graft copolymer as a structure directing agent. Well-organized mesoporous $TiO_2$ films with excellent channel connectivities were developed via the sol gel processusing an organized PVC-g-POEM graft copolymer synthesized by one-pot ATRP. The careful adjustment of copolymer composition and solvent affinity using a THF/$H_2O$/HCl mixture was used to systematically vary the material structure. The influence of the material structure on solar cell performance was then investigated. A solid-state DSSC employing both the graft copolymer templated organized 700 nm-thick $TiO_2$ films and graft copolymer electrolytes exhibited a solar conversion efficiency of 2.2% at 100 $mW/cm^2$. This value was approximately two-fold higher than that attained from a DSSC employing a random mesoporous $TiO_2$ film. The solar cell performance was maximized at 4.6% when the film thickness was increased to $2.5{\mu}m$. We believe that this graft copolymer-directed approach introduces a new and simple route toward the synthesis of well-organized metal oxide films as an alternative to a conventional block copolymer-based template.

  • PDF

Synthesis of Porous $TiO_2$ Thin Films Using PVC-g-PSSA Graft Copolymer and Their Use in Dye-sensitized Solar Cells (PVC-g-PSSA 가지형 공중합체를 이용한 다공성 $TiO_2$ 박막의 합성 및 염료감응 태양전지 응용)

  • Byun, Su-Jin;Seo, Jin-Ah;Chi, Won-Seok;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2011
  • An amphiphilic graft copolymer comprising a poly(vinyl chloride) (PVC) backbone and poly (styrene sulfonic acid) (PSSA) side chains (PVC-g-PSSA) was synthesized via atom transfer radical polymerization (ATRP). Mesoporous titanium dioxide $(TiO_2)$ films with crystalline anatase phase were synthesized via a sol-gel process by templating PVC-g-PSSA graft copolymer. Titanium isopropoxide (TTIP), a $TiO_2$ precursor was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grew to form mesoporous $TiO_2$ films, as confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The performances of dye-sensitized solar cell (DSSC) were systematically investigated by varying spin coating times and the amounts of P25 nanoparticies. The energy conversion efficiency reached up to 2.7% at 100 mW/$cm^2$ upon using quasi-solid-state polymer electrolyte.

Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties (LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3의 적층구조를 가지는 가스센서 제조와 그의 NOx 검지특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.423-428
    • /
    • 2015
  • Impedancemetric $NO_x$ (NO and $NO_2$) gas sensors were designed with a stacked-layer structure and fabricated using $LaCr_xCo_{1-x}O_3$ (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ plates as the solid-electrolyte transducer material. The $LaCr_xCo_{1-x}O_3$ layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and $NO_x$ sensing properties of the $LaCr_xCo_{1-x}O_3$ powders were investigated with powder X-ray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of $NO_x$ at $400^{\circ}C$ (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at $700^{\circ}C$, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the $LaCr_xCo_{1-x}O_3$powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the $LaCr_xCo_{1-x}O_3$ powders with $0{\leq}x<0.8$ had a rhombohedral symmetry. The size of the particles in the $LaCr_xCo_{1-x}O_3$powders increased from 0.1 to $0.5{\mu}m$ as the Co concentration increased. The sensing performance of the stack-structured $LaCr_xCo_{1-x}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to $NO_2$ gas. Compared to other impedancemetric sensors, the $LaCr_{0.8}Co_{0.2}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensor exhibited good reversibility and reliable sensingresponse properties for $NO_x$ gases.