• Title/Summary/Keyword: Solid phase micro-extraction

Search Result 59, Processing Time 0.037 seconds

Analysis of the Volatile Organic Compounds of Persimmon Flower according to Tree Age and Floral Organ (감나무 수령과 감꽃 기관에 따른 휘발성 향기성분 분석)

  • Kim, Ji Hye;Hong, Sae Jin;Shin, Il Sheob;Eum, Hyang Lan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • This study was conducted to investigate volatile organic compounds (VOCs) of persimmon (Diospyros kaki Thunb) flower. VOCs of persimmon flower was collected via SPE (solid phase micro extraction) and determined by GC-MS according to tree age and organs such as flower and calyx. The ratio of early bloom was higher in more than 15 year old tree than other trees showing tree age was related with flowering rate. Major VOCs of persimmon flower was a-pinene, butane, caryophyllene, cubebene, lavandulol, D-limoneneylangene, ylangene, mainly included green, fruit, and floral flavors. The number of VOCs in persimmon flower was 30 compounds in 5-9 years old tree, 24 compounds in 10-14 years old tree, and 32 compounds in more than 15 years old tree. In comparison with VOCs in organs of sweet persimmon 'Fuyu' cultivar, flower has 10 compounds of VOCs and 26.35% of relative peak area, while calyx has 14 compounds and 46.28%, respectively. In astringent persimmon, flower has 6 compounds of VOCs and 17.58% of relative peak area, while calyx has 9 compounds and 50.27%, showing calyx of both cultivars has various volatile compounds. This study will contribute to provide a basic data for the fragrance industry to use the flavor of persimmon flower.

Organic Acids, Free Sugars, and Volatile Flavor Compounds by Type of Jerusalem Artichoke (돼지감자의 품종별 유기산, 유리당 및 휘발성 향기성분)

  • Jung, Bok-Mi;Shin, Tai-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.822-832
    • /
    • 2017
  • This study analyzed contents of organic acids, free sugars, and volatile flavor compounds by type of Jerusalem artichoke (Helianthus tuberosus L.). Organic acids in dried Jerusalem artichoke were mainly composed of malic acid, citric acid, and succinic acid. Sucrose, fructose, and glucose were the major sugar components of dried Jerusalem artichoke. Free sugars were more abundant in the white colored sample than in the purple colored sample. In contrast, purple colored sample contained more organic acids than the white colored one. Volatile compounds in Jerusalem artichoke were investigated using the solid-phase micro-extraction method of gas chromatography/mass spectrometry. A total of 117 volatile compounds were identified in Jerusalem artichoke, and chemical classification was as follows: 5 acids, 13 alcohols, 19 aldehydes, 12 hydrocarbons, 15 ketones, 8 miscellaneous, 27 pyrazines, and 18 terpenes in all samples. Terpene was the most abundant in Jerusalem artichoke, and ${\beta}$-bisabolene was the main component in terpenes. The second most common compound was aldehyde, and hexanal was the highest. Pyrazines were the most abundant in the roasted samples, and 2,5-dimethyl-3-ethylpyrazine was present at the highest level, followed by 2,5-dimethylpyrazine. Compared with purple samples, main compounds contained in white samples were aldehydes and hydrocarbons, whereas the major compounds in purple samples were terpenes and alcohols.

Monitoring of the Changes in Volatile Flavor Components in Oriental Melon Wine Using SPME (SPME를 이용한 참외와인의 휘발성 향기성분의 모니터링)

  • Jo, Yong-Jun;Kim, Ok-Mi;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.207-214
    • /
    • 2013
  • This study was conducted to investigate changes in the main volatile flavor components of oriental melon during the process of alcohol fermentation via SPME (solid phase micro extraction). The flavor components of oriental melon were shown to have mainly included melon and green flavors. The green flavor was identified to be nonanal, 1-butanol, 1-octen-2-ol and benzene, and its relative concentration was shown to be 16.66%. The nonanal concentration was shown to have been reduced among the green-flavor components, but no significant change in remaining components was observed. Mainly, sweet flavor tended to increase, and the relative concentration of benzene was particularly shown to have increase by 25.58%, accounting for the highest relative concentration. The amount of green-flavor components, except for 1-butanol, was shown to have significantly decrease after alcohol fermentation. Then, no component of green-flavor, which causes an offensive smell, was found during fermentation and aging. Meanwhile, the volatile flavor components, which are consist of acids, were shown to have been produced during alcohol fermentation. In particular, octanoic acid, which causes off-flavor, was shown to be 60.99%, a very high relative concentration during the aging stage. In addition, acetic acid with a pungent sour flavor tended to be produced. A further study on the improvement of flavor in the production of oriental melon wine is required.

Effect of Seaweeds and Adsorbents on Volatile Flavor Components of Onion Juice (해조류 및 흡착제의 첨가가 양파즙의 냄새에 미치는 영향)

  • Kee, Hae-Jin;Park, Yang-Kyun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1477-1483
    • /
    • 1999
  • In order to retain or remove the flavor components of onions, this study was performed to investigate the effect of seaweeds and adsorbents on volatile flavor components of onion juice by testing a sensory evaluation, measuring the amount of pyruvate and thiosulfinate, and investigating the changes of volatile components by SPME/GC. The main flavor compounds in raw onion juice were dipropyl tetrasulfide, 1-propenyl propyl trisulfide, methyl propyl trisulfide, dipropyl trisulfide. Volatile flavor compounds in onion juice treated with tangleweed, brown-seaweed, laver and celite showed a relatively decreasing tendency compared to untreated onion juice, but most of volatile flavor compounds in onion juice treated with activated charcoal and ${\beta}-cyclodextrin$ were removed. The result of the sensory evaluation with various materials for masking onion flavor showed a significant difference at the p<0.05 level. The amount of pyruvate and thiosulfinate treated with tangleweed, brown-seaweed, laver and celite showed little difference compared to untreated onion juice, but the amount of pyruvate and thiosulfinate treated with activated charcoal and ${\beta}-cyclodextrin$ decreased largely compared to untreated onion juice. As a result of the study, onion juice treated with tangleweed, brown-seaweed, laver and celite showed the effect of preserving the pungent taste and masking the onion flavor. Activated charcoal and ${\beta}-cyclodextrin$added to onion juice might have a role in removing the onion flavor by adsorbing volatile flavor compounds in onion.

  • PDF

Herbicidal Activity of Essential Oil from Palmarosa (Cymbopogon martini) (팔마로사 정유의 살초활성)

  • Hong, Su-Young;Choi, Jung-Sup;Kim, Song-Mun
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.96-102
    • /
    • 2011
  • The objective of this study was to find herbicidal compounds in the essential oil of palmarosa (Cymbopogon martini). Of essential oils from basil (Ocimum basilicum), blackpepper (Piper nigrum), clary sage (Salvia sclarea), ginger (Zingiber pfficinale), hyssop (Hyssopus officinalis), nutmag (Myristica fragrance), palmarosa (Cymbopogon martini), fennel (Foeniculum vulgare), sage (Salvia leucantha), and spearmint (Mentha spicta), the herbicidal activity of palmarosa essential oil, which was determined by a seed bioassay using rapeseed (Brassica napus L.), was highest ($GR_{50}$ value, $201{\mu}g\;mL^{-1}$). In palmarosa essential oil, 11 volatile organic chemicals were identified by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus and the major constituents were geraniol (40.23%), geraniol acetate (15.57%), cis-ocimene (10.79%), and beta-caryophyllene (8.72%). The $GR_{50}$ values of geraniol, citral, nerol, and geranyl acetate were 151, 224, 452, and $1,214{\mu}g\;mL^{-1}$, respectively. In greenhouse and field experiments, foliar application of palmarosa essential oil at the level of $80kg\;ha^{-1}$ controlled weeds effectively. Overall results of this study showed that the herbicidal activity of palmarosa essential oil could be due to geraniol and citral which had lower $GR_{50}$ values.

Herbicidal Activity of Essential Oil from Amyris (Amyris balsamifera) (아미리스 정유의 제초활성)

  • Yun, Mi Sun;Yeon, Bo-Ram;Cho, Hae Me;Choi, Jung Sup;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.44-49
    • /
    • 2012
  • The objective of this study was to know the herbicidal activity of the essential oil from amyris (Amyris balsamifera). In a seed bioassay experiment, the amyris essential oil inhibited the growth of rapeseed (Brassica napus) by fifty percent at 8.8 ${\mu}g\;g^{-1}$. And in a greenhouse experiment, sorghum, barnyard grass and Indian jointvetch, which was applied in above-ground parts, with the amyris essential oil at 4,000 ${\mu}g\;ml^{-1}$ showed visual injuries of 90, 70, and 70, respectively (0, no damage; 100, total damage). However, soil application of the essential oil did not show such herbicidal injuries. In a field experiment, foliar application of the amyris essential oil at 5% controlled effectively weeds such as barnyardgrass, shepherd's purse, and clover in 24 hours. Our results indicated that the amyris essential oil had herbicidal activity. To understand the composition of the amyris essential oil, the oil was analyzed by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus. There were 15 organic chemicals in the oil and the major constituents were calarene, elemol, ${\gamma}$-eudesmol, curcumene, ${\beta}$-sesquiphellandrene, zingiberene, selina-3,7(11)-diene, 1,3-diisopropenyl-6-methyl-cyclohexene, ${\beta}$-bisabolene, and ${\beta}$-maaliene. Overall results suggest that the amyris essential oil had a herbicidal activity with fast, contact, and non-selective mechanism.

Analysis of Mineral and Volatile Flavor Compounds in Pimpinella brachycarpa N. by ICP-AES and SDE, HS-SPME-GC/MS (ICP-AES와 SDE, HS-SPME-GC/MS를 이용한 참나물의 무기성분과 향기성분)

  • Chang, Kyung-Mi;Chung, Mi-Sook;Kim, Mi-Kyung;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.2
    • /
    • pp.246-253
    • /
    • 2007
  • Mineral and volatile flavor compounds of Pimpinella brochycarpa N., a perennial Korean medicinal plant of the Umbelliferae family, were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and simultaneous steam distillation extract (SDE)-gas chromatography mass spectrometry (GC/MS), head space solid phase micro-extraction (HS-SPME)-GC/MS. Mineral contents of the stalks and leaves were compared and the flavor patterns of the fresh and the shady air-dried samples were obtained by the electronic nose (EN) with 6 metal oxide sensors. Principal component analysis (PCA) was carried out using the data obtained from EN. The 1st principal values of the fresh samples have + values and the shady air-dried have - values. The essential oil extracted from the fresh and the shady air-dried by SDE method contain 58 and 31 flavor compounds. When HS-SPME method with CAR/PDMS fiber and PDMS fiber were used, 34 and 21 flavor compounds. The principal volatile components of Pimpinella brachycarpa N. were ${\alpha}$-selinene, germacrene D, and myrcene.

Analysis of Characterization in Commercial Extra Virgin Olive Oils (유통 압착올리브유의 이화학적인 특성)

  • Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.866-873
    • /
    • 2007
  • To analyze and differentiate volatile compounds of 13 extra virgin olive oils from market, solid-phase micro extraction (SPME) GC-MS and electronic nose (EN) equipped with metal oxide sensors were applied. The volatiles identified in extra virgin olive oils include hexanal, 4-hexen-1-ol, (Z)-3-hexen-1-ol, acetic acid, and 2,4-dimethyl-heptane, etc. Response from EN was analysed by the principal component analysis. Proportion of the first Principal component was 99.70%, suggesting that each aroma pattern of the 13 extra virgin olive oils could be discriminated by EN. Fatty acid compositions were oleic (61.1${\sim}$77.9 mole%), palmitic (11.7${\sim}$16.5 mole%), linoleic (4.7${\sim}$9.7 mole%), stearic (2.5${\sim}$2.9 mole%), Palmitoleic (0.8${\sim}$2.4 mole%), and linolenic acid (0.7${\sim}$1.2 mole%). In color study, extra virgin olive oil showed $L^{\ast}$ value of 81.7${\sim}$92.9, $a^{\ast}$ value of -28.3${\sim}$13.5 and $b^{\ast}$ value of 52.2${\sim}$139.0. Total phenol and ${\alpha}-tocopherol$ contents were 6.2${\sim}$24.9 mg/100 g and 5.5${\sim}$12.8 mg/100 g, respectively. In Rancimat test, the induction period of 13 extra virgin olive oils showed 31.76${\sim}$54.04 hr while their POV ranged from 13.5 to 22.9 meq/kg oil.

Comparison of Fragrance and Chemical Composition of Essential Oils in Gom-chewi (Ligularia fischeri) and Handaeri Gom-chewi (Ligularia fischeri var. spicifoprmis) (곰취(Ligularia fischeri)와 한대리곰취(Ligularia fischeri var. spicifoprmis) 정유의 향취 및 향기성분 비교)

  • Yeon, Bo-Ram;Cho, Hae Me;Yun, Mi Sun;Jhoo, Jin-Woo;Jung, Ji Wook;Park, Yu Hwa;Kim, Songmun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1758-1763
    • /
    • 2012
  • This study was conducted to compare fragrance and volatile chemicals of essential oils in Gom-chewi (Ligularia fischeri) and Handaeri Gom-chewi (Ligularia fischeri var. spicifoprmis). Essential oils were extracted by steam distillation of leaves of Gom-chewi (GC) and Handaeri Gom-chewi (HGC), after which samples were collected by solid-phase micro extraction and the compositions of the essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS). The yields of the essential oils in GC and HGC were 0.12% and 0.04%, respectively, and the threshold levels of the essential oils in GC and HGC were 0.01% and 0.1%, respectively. There were 19 constituents of the essential oil of Gom-chewi: 14 carbohydrates, 4 alcohols, and 1 acetate, and the major constituents were L-${\beta}$-pinene (36.02%), D-limonene (25.64%), ${\alpha}$-pinene (24.85%) and ${\beta}$-phellandrene (5.39%). In the essential oil of HGC, 25 constituents were identified: 17 carbohydrates, 4 alcohols, 3 acetates, and 1 N-containing compound, and the major constituents of HGC were D-limonene (39.74%), L-${\beta}$-pinene (35.43%) and ${\alpha}$-pinene (11.94%). The minor constituents of HGC were ${\rho}$-cymene, ${\gamma}$-muurolene, ${\gamma}$-cadinene, germacrene D, ingol 12-acetate and butyl 9,12,15-octadecatriene and nimorazole were not identified in the GC essential oil. Overall, the results showed that the fragrance and chemical compositions of essential oils in GC and HGC differed, suggesting that both essential oils could be used for the development of perfumery products.