• Title/Summary/Keyword: Solid particle behavior

Search Result 119, Processing Time 0.029 seconds

Characteristics of Minimum Fluidization Velocity and Pressure Fluctuations in Annular Fluidized Beds (Annular 유동층 반응기에서 최소유동화 속도 및 압력요동 특성)

  • Son, Sung-Mo;Kim, Uk-Yeong;Shin, Ik-Sang;Kang, Yong;Choi, Myung-Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.707-713
    • /
    • 2008
  • Characteristics of minimum fluidization velocity and pressure fluctuations were investigated in an annular fluidized bed whose diameter was 0.102 m and 2.0 m in height. Effects of gas velocity, particle size and bed temperature on the minimum fluidization velocity and pressure fluctuations were examined. The values of minimum fluidization velocity obtained by means of three different methods were very similar each other. The correlation dimension could be a quantitative parameter for expression the resultant complex behavior of gas and solid mixture in the annular fluidized bed. The value of correlation dimension increased with increasing gas velocity, fluidized particle size and temperature in the bed. The minimum fluidization velocity could be determined by means of correlation dimension of pressure fluctuations as well as pressure drop in the bed and standard deviation of pressure fluctuations. The minimum fluidization velocity increased with increasing particle size but decreased with increasing bed temperature in annular fluidized beds. The minimum fluidization velocity was well correlated in therms of correlation dimension as well as operating variables within experimented conditions of this study.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Microstructure and Giant Magnetoresistance of AgCo Nano-granular Alloy Films (Ag-Co합금박막의 두께에 따르는 미세구조 변화 및 자기저항 거동)

  • 이성래;김세휘
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 1998
  • The thickness dependence of the microstructure and the giant magnetoresistance behavior of co-evaporated Co-Ag granular alloy films were investigated. The maximum magnetoresistance ratio of 24% was observed in the the as-deposited state of the 40 at. % Co alloy having 200 nm thickness. The surface scattering contributed about 20% to the total resistivity in the 20 nm thick films. The MR ratio dropped sharply when the film thickness was below 50 nm. The reduction in the Co particle size and the increase in solid solubility of Ag in fcc Co when the film thickness decreased were observed using a high resolution TEM. The aspect ratio of the Co particles was also affected by the film thickness. Those microstructural changes as well as the surface induced spin flipping play a significant role in the $\Delta$p change.

  • PDF

The Influence of Heat Treatment and Ca contents on the Electrochemical Characteristics of Mg-Ca Alloys (Mg-Ca 합금의 전기화학적 특성에 미치는 Ca 첨가량 및 열처리의 영향)

  • Lee, S.H.;Chung, Dong-Seok;Park, B.O.;Kim, Y.G.;Jeong, Ha-Guk;Kim, Hye-Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.173-179
    • /
    • 2004
  • In this study, the influence of heat treatment and Ca contents on the electrochemical behavior was investigated. Mg-Ca alloys, i.e., Mg-0.22wt%Ca, Mg-0.56wt%Ca, Mg-1.31wt%Ca are prepared by ingot metallurgy. As-cast Mg-Ca alloys exhibited better electrochemical properties than pure Mg. Especially, Mg-0.22wt%Ca alloy improves its anode efficiency up to 62% and lowers the OCP up to -1.72VSCE. Microstructure and XRD patterns of Mg-Ca alloys show that additive Ca element is mainly solid-solutioned. While, the others show the microstructure and XRD pattern with large $Mg_2Ca$ at grain boundary. To assess the effect of heat treatment on the as-cast Mg-alloy, the specimens were heat treated at $200^{\circ}C$ for 2 hours under $CO_2$ gas atmosphere. Although corrosion properties of Mg-Ca alloys are somewhat deteriorated by heat treatment at $200^{\circ}C$ Mg-0.22wt%Ca alloy with uniformly distributed nano-sized $Mg_2Ca$ phase in ${\alpha}$-Mg matrix show still better corrosion properties than pure Mg specimen.

Thermal Compatibility of High Density U-Mo Powder Fuels Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyun-Suk;Chang, Se-Jung;Ko, Young-Mo;Lee, Don-Bae;Kim, Chang-Kyu;Kuk, Il-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.165-170
    • /
    • 1997
  • Samples of extruded dispersions of 24 vol.% spherical U-2wt%Mo and U-10wt.%Mo powders in an aluminum matrix were annealed for over 2,000 hours at 40$0^{\circ}C$. No significant dimensional changes occurred in the U-1025.%Mo/aluminum dispersions. The U-2wt.%Mo/aluminum dispersion, however, increased in volume by 26% after 2,000 hours at 40$0^{\circ}C$. This large volume change is mainly due to the formation of voids and cracks resulting from nearly complete interdiffusion of U-Mo and aluminum. Interdiffusion between U-10wt.%Mo and aluminum was found to be minimal. The different diffusion behavior is primarily due to the fact that U-2wt.%Mo decomposes from an as-atomized metastable r-phase(bcc) solid solution into the equilibrium r-U and U$_2$Mo two-phase structure during the experiment, whereas U-10wt.%Mo retains the metastable r-phase structure after the 2,000 hours anneal and thereby displays superior thermal compatibility with aluminum compared to U-2wt.%Mo. In addition, the molybdenium supersaturated in U-10wt.%Mo particles inhibits the diffusion of aluminum atoms along the grain boundary into the particle. Also, the dissolution of only a few Mo atoms in UAL$_3$ retards the formation of the intermediate phase, as Mo atoms need to migrate from new intermetallic compounds to unreacted islands.

  • PDF

A Study of Alkali Metal Vapor Adsorption Behavior by Using Pressurized Reactor (가압반응기를 이용한 알칼리금속증기 흡착특성에 관한 연구)

  • 전수한;최병철;김형택
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Alkali metal compounds existed in original coal or sorbents are exhausted as vapor or small particle at the outlet of combustor when operating PFBC power plant. These compounds can be removed with dust removal equipment, but total generation efficiency will be decreased because of lower operating temperature of dust removal equipment. Alkali metal contained in vapor phase is initially deposited onto turbine blade results in serious corrosion. The concentration of alkali vapor in the PFBC flue gas is 20∼40 ppm which is dependent on mineral characteristics and composition as well as operating condition of PFBC. However, the allowance limit of alkali metal vapor is assigned as less than 50 ppb for gas turbine when coal or oil is used as fuel. Therefore, alkali metal vapor in PFBC or IGCC process should be removed by solid sorbents to prevent corrosion of turbine blade and improve plant efficiency. In the present investigation, powder of Bauxite, Kaolinite and Limestone is used in the preparation of cylinder-type pellet which is inserted into the pressurized alkali removal reactor for the alkali absorption experiment. Experimental results showed that the alkali removal efficiency in the order of Bauxite, Kaolinite and Limestone. Alkali vapor removal efficiency is related with reaction temperature, porosity of pellet and alkali vapor concentration of flue gas.

Study of a Supercritical Fluid Process for the Preparation of Hydroxypropyl-β-cyclodextrin Inclusion Complexes (Hydroxypropyl-β-cyclodextrin 포접복합체 제조를 위한 초임계유체 공정 연구)

  • Lee, Sang-Yun;Kim, Jeong-Kyu;Kim, Woo-Sik;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.110-117
    • /
    • 2005
  • In this work, solid-state inclusion complex powders of itraconazole and $2-hydroxypropyl-{\beta}-cyclodextrin(HP-{\beta}-CD)$ were produced by a supercritical anti-solvent (SAS) process. In order to evaluate the degree of complexation, the thermal behavior of the microparticulate complexes was investigated using differential scanning calorimetry. The experimental results obtained for the solubility and dissolution rate of the microparticulate inclusion complexes in a buffer solution of pH 1.2 showed that the complexation of itraconazole with $HP-{\beta}-CD$ results in a significant increase in the solubility and dissolution rate of itraconazole. The particle size of the SAS-produced inclusion complexes was dramatically reduced ($<0.1-0.5{\mu}m$) compared with untreated itraconazole ($30-50{\mu}m$) and $HP-{\beta}-CD$ ($50-100{\mu}m$). The solubility of itraconazole was increased with the increase of pressure at a constant temperature to ca. $758.6{\mu}g/mL$ in an aqueous medium of pH 1.2. The dissolution rate of itraconazole was observed to be significantly improved and about 90% of itraconazole was found to be dissolved within 5-10 min.

Effect of AlF3 addition to the plasma resistance behavior of YOF coating deposited by plasma-spraying method (플라즈마-스프레이법에 의해 코팅한 옥시불화이트륨(YOF) 증착층의 플라즈마 내식성에 미치는 불화알루미늄(AlF3) 첨가 효과)

  • Young-Ju Kim;Je Hong Park;Si Beom Yu;Seungwon Jeong;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.153-157
    • /
    • 2023
  • In order to manufacture a semiconductor circuit, etching, cleaning, and deposition processes are repeated. During these processes, the inside of the processing chamber is exposed to corrosive plasma. Therefore, the coating of the inner wall of the semiconductor equipment with a plasma-resistant material has been attempted to minimize the etching of the coating and particle contaminant generation. In this study, we mixed AlF3 powder with the solid-state reacted yttrium oxyfluoride (YOF) in order to increase plasma-etching resistance of the plasma spray coated YOF layer. Effects of the mixing ratio of AlF3 with YOF powder on crystal structure, microstructure and chemical composition were investigated using XRD and FE-SEM. The plasma-etching ratios of the plasma-spray coated layers were calculated and correlation with AlF3 mixing ratio was analyzed.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.