Study of a Supercritical Fluid Process for the Preparation of Hydroxypropyl-β-cyclodextrin Inclusion Complexes

Hydroxypropyl-β-cyclodextrin 포접복합체 제조를 위한 초임계유체 공정 연구

  • Lee, Sang-Yun (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Jeong-Kyu (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Kim, Woo-Sik (Department of Chemical Engineering, Yonsei University) ;
  • Ryu, Jong-Hoon (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lim, Gio-Bin (Department of Chemical and Biochemical Engineering, The University of Suwon)
  • 이상윤 (연세대학교 공과대학 화학공학과) ;
  • 김정규 (수원대학교 공과대학 화공생명공학과) ;
  • 김우식 (연세대학교 공과대학 화학공학과) ;
  • 유종훈 (수원대학교 공과대학 화공생명공학과) ;
  • 임교빈 (수원대학교 공과대학 화공생명공학과)
  • Received : 2004.11.08
  • Accepted : 2004.12.10
  • Published : 2005.02.28

Abstract

In this work, solid-state inclusion complex powders of itraconazole and $2-hydroxypropyl-{\beta}-cyclodextrin(HP-{\beta}-CD)$ were produced by a supercritical anti-solvent (SAS) process. In order to evaluate the degree of complexation, the thermal behavior of the microparticulate complexes was investigated using differential scanning calorimetry. The experimental results obtained for the solubility and dissolution rate of the microparticulate inclusion complexes in a buffer solution of pH 1.2 showed that the complexation of itraconazole with $HP-{\beta}-CD$ results in a significant increase in the solubility and dissolution rate of itraconazole. The particle size of the SAS-produced inclusion complexes was dramatically reduced ($<0.1-0.5{\mu}m$) compared with untreated itraconazole ($30-50{\mu}m$) and $HP-{\beta}-CD$ ($50-100{\mu}m$). The solubility of itraconazole was increased with the increase of pressure at a constant temperature to ca. $758.6{\mu}g/mL$ in an aqueous medium of pH 1.2. The dissolution rate of itraconazole was observed to be significantly improved and about 90% of itraconazole was found to be dissolved within 5-10 min.

초임계유체를 이용한 공정을 통하여 물에 대해 난용성 성질을 지니는 약물인 itraconazole과 $2-hydroxypropyl-{\beta}-cyclodextrin(HP-{\beta}-CD)$의 포접복합체를 제조하였다. 제조된 포접복합체는 SEM, DSC, XRD 등을 이용하여 고체상태의 특성 분석을 수행하여 itraconazole의 결정성적 특성이 $HP-{\beta}-CD$와의 포접체를 형성하며 무정질적으로 변화된 것을 확인할 수 있었다. pH 1.2의 인공위액을 이용하여 수행된 수용액 내에서의 포접복합체의 용해도 및 용출시험 결과 itraconazole 원재료에 비하여 20-200배 정도의 증가된 용해도 결과를 얻을 수 있었다. 초임계유체 공정을 통하여 얻어진 포접복합체의 용해도는 압력증가에 의한 이산화탄소 밀도 증가에 따라 증가하였으며 동일 조건에서 용액 중의 $HP-{\beta}-CD$의 함량이 높아질수록 증가하였다. $35^{\circ}C$, 140 bar의 공정 조건에서 itraconazole과 $HP-{\beta}-CD$의 구성 몰비가 1:3인 용액을 사용하였을 경우 itraconazole 원재료에 비하여 약 200배 이상의 용해도인 $758.6{\mu}g/mL$의 용해도를 지니는 포접복합체를 얻을 수 있었다. 용출시험 결과 투입 약물의 90% 이상이 용출 개시 5-10분 내에 용출되어 대조제로 사용한 시판제제 및 원재료에 비하여 매우 빠른 초기 방출률과 우수한 용출 특성을 확인할 수 있었다. 본 연구를 통하여 기존의 시간소비성 및 다단계의 포접체 제조공정을 개선할 수 있는 한 방법으로 초임계유체 공정이 적용될 가능성을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국과학재단, 에너지관리공단

References

  1. Thompson, D. O., 'Cyclodextrins-Enabing Excipients: Their Present and Future Use in Pharmaceuticals,' Crit. Rev. Ther. Drug Carrier Syst., 14(1), 1-104(1997)
  2. Loftsson, T. and Brewster, M. E., 'Pharmaceutical Applications of Cyclodextrins: 1. Solubilization and Stabalization,' J. Pharm. Sci., 85, 1017-1025(1996) https://doi.org/10.1021/js950534b
  3. Uekama, K. and Otagiri, M., 'Cyclodextrins in Drug Carrier Systems', CRC Crit. Rev. Ther. Drug Carrier Syst., 3, 1-40(1987)
  4. Martin Del Vallw, E. M., 'Cyclodextrins and Their Uses: A Review,' Process Biochemistry, 39, 1033-1046(2004) https://doi.org/10.1016/S0032-9592(03)00258-9
  5. Sheehan, D. J., Hitchcock, C. A. and Sibley, C. M., 'Current and Emerging Azole Antofungal Agents,' Clin. Microbiol. Rev., 12, 40-79(1999)
  6. Warnock, D. W., 'Itraconazole and Fluconazole: New Drugs for Deep Fungal Infection,' J. Antimicrob. Chemother., 24, 275-277(1989) https://doi.org/10.1093/jac/24.3.275
  7. Van Peer, A., Woestenborghs, R., Heykants, J., Gasparini, R. and Gauwenbergh, G., 'The Effects of Food and Dose on The Oral Systemic Availability of Itraconazole in Healthy Subjects,' Eur. J. Clin. Pharmacol., 36, 423-426(1989) https://doi.org/10.1007/BF00558308
  8. Baert, L. E. C., Verreck, G. and Thoné, D., 'Antifungal Conpositions with Improved Bioavalability,' U.S. Patent No. 6,509,038 B2(2003)
  9. Baert, L. E. C., Verreck, G. and Thone, D., 'Solid Mixtures of Cyclodextrin Prepared via Melt-Extrusion,' U.S. Patent No. 6,365,188 B1(2002)
  10. Joseph, A. B., Bruce, L. M., Joseph, G., Alan, E. H., John, L. C., Robert, H. B. and Lois, J., 'Enhanced Bioavailability of Itraconazole in Hydroxypropyl-$\beta$-Cyclodextrin Solution versus Capsules in Healthy Volunteers,' Antimicrob. Agents Chemother., 42, 1862-1865(1998)
  11. Barone, J. A., Koh, J. G., Bierman, R. H., Colaizzi, J. L., Swanson, K. A., Gaffar, M. C., Moskovitz, B. L., Mechlinski, W. and Van de Velde, V., 'Food Interaction and Study-state Pharmacokinctics of Itraconazole Capsules in Healthy Male Volunteers,' Antimicrob. Agents Chemother., 37, 778-784(1993) https://doi.org/10.1128/AAC.37.4.778
  12. Grant, S. M. and Clissole, S. P., 'Itraconazole: A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Use in Superficial and Systemic Mycoses,' Drugs, 37, 310-344(1989) https://doi.org/10.2165/00003495-198937030-00003
  13. Ghorab, M. K. and Adeyeye, C., 'Enhanced Bioavailability of Process-induced Fast-dissolving Ibuprofen Congranulated with $\beta$-Cyclodextrin,' J. Pharm. Sci., 92, 1690-1697(2003) https://doi.org/10.1002/jps.10443