평판형 고체산회물 연료전지의 양방향 수전해 특성 연구

최영재[†]・안진수

(재)포항산업과학연구원 에너지소재연구그룹

Study on Reversible Electrolysis Characteristic of a Planar Type SOFC

YOUNGJAE CHOI⁺, JINSOO AHN

Energy Materials Research Group, Research Institute of Industrial Science & Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang 37673, Korea

^TCorresponding author : yjchoi_rist@rist.re.kr

Received 16 October, 2017 Revised 19 December, 2017 Accepted 29 December, 2017 Abstract >> This paper presents the reversible electrolysis characteristics of a solid oxide fuel cell (SOFC) using a 10×10 cm² anode supported planar cell with an active area of 81 cm². In this work, current-voltage characteristic test and reversible electrolysis cycle test were carried out sequentially for 2,114 hours at a furnace temperature of 700° . The current-voltage characteristics for reversible electrolysis mode was measured at a current of ±26.7 A under various H₂O utilization conditions. The reversible electrolysis cycle was performed 50 times at a current of ±32.4 A. As a result, The performance degradation of SOEC mode was larger than that of SOFC mode.

Key words : Solid oxide fuel cell(고체산화물 연료전지), Anode supported planar cell(연료극 지지체 평판형 셀), Reversible electrolysis(양방향 수전해), I-V Characteristic(전류-전압 특성), Cycle characteristic(사이클 특성), Performance degradation(성능 저하)

1. 서 론

지구온난화 대응 및 화석연료 대체에너지 기술개 발에 대한 요구가 높아짐에 따라 대체 에너지원으 로 수소가 주목받고 있다.

고온에서 작동하는 고체 산화물 전지는 solid oxide fuel cell (SOFC) 모드와 solid oxide electrolysis cell (SOEC) 모드의 이중모드로 가역적으로 작동할 수 있다. SOFC 모드에서는 연료 및 공기가 전기화

학반응을 통해 전기를 생산한다. SOEC 모드에서는 물 전기분해에 의해 수소 및 산소를 생산한다¹⁾. SOEC는 100% 이상의 높은 전기·화학에너지 변환 효율을 얻을 수 있으며²⁻⁵⁾, SOFC 기술을 기반으로 구축할 수 있는 장점이 있다.

본 연구에서는 연료극 지지체형 평판형 셀의 양 방향 수전해 특성을 파악하기 위하여 단위전지(1 cell) 를 제작하여 전류-전압(I-V) 및 양방향 수전해 cycle의 성능 특성을 분석하였다.

2. 실 험

2.1 단위전지 제작

SOFC 단위전지는 셀, 밀봉재, 집전체 및 분리판 등의 구성요소로 이루어지며, 본 연구에서는 연료극 지지체형 평판형 셀을 테이프캐스팅 공정으로 제작 하였다. 밀봉재는 유리계의 고온 밀봉재를 디스펜싱 공정을 적용하여 제작하였다. 집전체는 금속 폼과 금속합금 폼을 사용하였고, 분리판은 STS444 소재 와 포스코에서 SOFC용으로 개발한 STS400계열의 소 재를 사용하여 절단, 가공 및 용접하여 제작하였다.

SOFC 단위전지는 크기가 10×10 cm, 반응면적이 81 cm²인 연료극 지지체형 평판형 셀과 구성요소를 조합하여 제작하였다. SOFC 단위전지의 연료극 및 공기극 가스는 평행흐름(co-flow) 방식으로 설계하여 제작하였다. 설계시 가스조건은 전기로 온도 700℃ 및 SOFC 모드 기준 전류 40.5 A (500 mA/cm²)에서 연료이용률 60-75%, 공기이용률 15%로 설정하였 다. 이를 기준으로 분리판 내부에서의 가스유동이 균일하고 압력손실이 최소화되도록 분리판 채널 및 매니폴드를 설계하여 제작하였다.

2.2 성능 평가

단위전지 구성요소들은 전기로에 설치된 구조물 에 순차적으로 쌓아 적층을 완료한 후 전기로의 온 도를 상온에서부터 승온단계에 따라 순차적으로 올 린 후 전기로 온도 750℃에서 연료극 전극의 환원 을 수행하였다.

연료극 전극의 환원 완료 후 전기로 온도를 750℃ 에서 700℃로 낮춘 후 연료극에는 mass fow controller (MFC) 및 bubble형 가습기를 사용하여 H₂, N₂ 및 수증기를 공급하고, 공기극에는 MFC를 사용 하여 Air를 공급하면서 SOFC 및 SOEC 각각의 단 위전지 전류-전압 특성과 양방향 수전해 조건에서 단위전지의 전류-전압 특성 및 양방향 수전해 사이 클 평가 실험을 순차적으로 실시하였다.

3. 결과 및 고찰

3.1 단위전지 전류-전압 특성

3.1.1 전류-전압(I-V) 특성(I)

SOFC 및 SOEC 모드에서 각각의 단위전지 전류-전압(I-V) 특성을 평가하기 위해 SOFC 모드에서는 연료극에 인가전류 40.5 A (500 mA/cm²) 기준으로 연료이용률 55% 조건으로 H2 0.56 SLPM을 H2O의 공급 없이 dry 조건으로 공급하고, 공기극에는 인가 전류 40.5 A기준으로 공기이용률 29% 조건으로 Air 2.5 SLPM을 공급한 후 전류를 0-40.5 A까지 증가시 키면서 전류-전압 특성을 평가하였다. SOEC 모드에 서는 연료극에 H₂ 0.63 SLPM, N₂ 0.6 SLPM을 75℃ 로 설정한 bubble형 가습기를 통과시켜 공급하고, 공 기극에는 Air 2.5 SLPM을 공급한 후 전류를 0-40.5 A까지 증가시키면서 전류 전압 특성을 평가하였다. 전류를 증가시키면서 측정된 SOFC 및 SOEC 모드에서 의 단위전지 전압 및 출력은 Fig. 1 및 Table 1과 같다. SOEC 모드에서는 전류 -40.5 A에서 셀 전압 1.437 V의 성능을 보였다. SOFC 모드의 경우 인가전류 40.5 A 및 연료이용률 55%에서 셀 전압 0.790 V, 출력 32.0 W 및 출력밀도 0.395 W/cm²의 성능을 보였다.

3.1.2 전류-전압(I-V) 특성(II)

단위전지의 양방향 수전해 전류-전압(I-V) 특성

Fig. 1. I-V characteristics for SOFC and SOEC mode

Current (A)	SOE	C mode	SOFC mode		
	Voltage (V)	Input power (W)	Voltage (V)	Output power (W)	
8.1	1.053	8.53	1.037	8.40	
16.2	1.152	18.67	0.937	15.18	
24.3	1.277	31.02	0.860	20.90	
32.4	1.379	44.67	0.826	26.78	
40.5	1.437	58.21	0.790	32.00	

 Table 1. I-V characteristic for SOEC and SOFC mode - resulting values

Table 2. Gas conditions at various reversible electrolysis mode

SOEC mode		Air		
H ₂ O utilization (%)	$\underset{(^{\circ}\!$	H ₂ (SLPM)	N ₂ (SLPM)	Air (SLPM)
35	81.8			
40	79.9			
45	78.2		0.6	2.5
50	76.6	0.4		
55	75.1			
60	73.7			
65	72.4			

을 평가하기 위해 Table 2와 같이 연료극에는 인가 전류 32.4 A (400 mA/cm²) 기준으로 SOFC 모드에 서 연료이용률 60%에 해당하는 H2 0.4 SLPM과 N2 0.6 SLPM을 가습기의 다양한 온도 조건에서 공급 하고, 공기극에는 Air 2.5 SLPM을 공급한 후 전류-전압 특성을 -330-330 mA/cm² (±26.7 A) 범위에서 평가하였다. 양방향 수전해 모드에서의 전압 및 출 력은 Fig. 2 및 Table 3과 같다. 실제 측정된 전류에 따른 셀 전압 값은 Fig. 2(a)에 도시하였으나 bubble 형 가습기의 특성상 셀 전압값이 변동하는 특성을 보여 polynomial curve fitting을 수행하여 전류-전압 특성을 Fig. 2(b) 및 Table 3에 나타내었다. -26.7 A 에서 H₂O 이용률에 변화에 따른 셀 전압변화는 3.31 mV/U_{H2O}%, 26.7 A에서 H₂O 이용률에 변화에 따른 셀 전압변화는 -1.24 mV/UHO%로 SOEC mode 가 SOFC mode보다 H2O 이용률에 변화에 따른 셀 전압변화가 크게 나타났다.

Fig. 2. I-V characteristics for reversible electrolysis mode (a) raw data plot, (b) polynomial curve fitting plot

 Table 3. I-V characteristic for reversible electrolysis mode-resulting values (raw data)

	SOEC mode			SOFC mode				
Current (A)	cell voltage (V)				cell voltage (V)			
	U _{H2O}							
	35%	45%	55%	65%	35%	45%	55%	65%
8.1	1.049	1.065	1.079	1.091	0.822	0.830	0.839	0.845
16.2	1.176	1.199	1.220	1.238	0.722	0.729	0.738	0.747
24.3	1.312	1.343	1.374	1.402	0.630	0.639	0.652	0.664
26.7	1.352	1.386	1.420	1.451	0.606	0.616	0.629	0.643

3.2 양방향 수전해 사이클 성능

양방향 수전해 전류-전압 특성 평가 후 연료극에 는 H₂ 0.4 SLPM과 N₂ 0.6 SLPM을 76.6℃로 설정한 bubble형 가습기를 통과시켜 공급하고, 공기극에는 Air 2.5 SLPM을 공급한 후 양방향 수전해 사이클

Fig. 3. Cell voltage during reversible electrolysis cycle

성능을 평가하였고, 성능 평가시 단위전지 셀 전압 변화를 Fig. 3에 나타내었다.

Fig. 3과 같이 양방향 수전해 사이클 성능은 840시간 부터 2,114시간까지 1,274시간 동안 총 50사이클을 실시하였다. 한 사이클은 SOEC 모드유지 12시간, 모드변환 1시간 및 SOFC 모드유지 12시간으로 구 성하여 총 25시간 동안 진행하였다. SOEC 및 SOFC 모드 유지시 전류는 32.4 A (400 mA/cm²)를 인가한 후 유지하였다. 양방향 수전해 사이클 별 SOEC 및 SOFC 모드 유지시 셀 전압값을 Table 4에 정리하였 다. 셀 전압값은 bubble형 가습기의 특성상 전압이 일정하게 유지되지 않고 셀 전압의 변동이 있어 모 드변환 직전 1시간 동안 1분 간격으로 측정한 데이 터의 평균값을 구해 정리하였다.

양방향 수전해 사이클 평가에 따른 SOEC 및 SOFC 모드에서의 단위전지 셀 전압의 성능변화는 Fig. 4와 같다. SOEC 모드에서 50사이클 동안의 성 능변화는 2.59 mV/cycle이었고, SOFC 모드의 경우 50사이클 동안의 성능변화는 -1.72 mV/cycle로 SOEC 모드가 SOFC 모드보다 양방향 수전해 사이클시 셀 전압 변화율이 큰 것으로 확인되었다. 총 50회의 양 방향 수전해 사이클 평가시 47번째 사이클 이후부 터 SOEC 및 SOFC 모드 모두에서 셀 전압변화가 이전 사이클에서의 셀 전압변화보다 크게 관찰되었 다. 이는 선행연구에서도 SOEC 모드에서의 성능 열화율이 SOEC 모드에서 보이는 열화율의 두 배

Cycle	Cell voltage			Cell voltage			Cell voltage	
	SO EC	SO FC	Cycle	SO EC	SO FC	Cycle	SO EC	SO FC
1	1.290	0.707	18	1.342	0.680	35	1.381	0.659
2	1.294	0.692	19	1.345	0.679	36	1.378	0.659
3	1.303	0.696	20	1.347	0.674	37	1.387	0.657
4	1.307	0.698	21	1.353	0.677	38	1.389	0.652
5	1.312	0.696	22	1.349	0.681	39	1.389	0.652
6	1.315	0.696	23	1.356	0.674	40	1.397	0.654
7	1.317	0.692	24	1.357	0.672	41	1.395	0.654
8	1.319	0.689	25	1.362	0.679	42	1.402	0.642
9	1.325	0.688	26	1.367	0.678	43	1.406	0.645
10	1.327	0.684	27	1.367	0.671	44	1.410	0.646
11	1.332	0.683	28	1.363	0.671	45	1.409	0.645
12	1.330	0.688	29	1.369	0.669	46	1.415	0.642
13	1.334	0.684	30	1.372	0.672	47	1.413	0.615
14	1.331	0.682	31	1.379	0.662	48	1.395	0.608
15	1.333	0.682	32	1.376	0.667	49	1.420	0.559
16	1.337	0.681	33	1.378	0.664	50	1.496	0.565
17	1.343	0.683	34	1.379	0.661			

Table 4. Results of reversible electrolysis cycle-cell voltage

Fig. 4. Performance degradation during reversible electrolysis cycle

정도 됨을 보고된 적이 있다[®]. 또한 SOFC 모드보다 SOEC 모드에서의 높은 열화율을 보이는 원인은 수 소극에 과량의 물 유입에 따른 부분적인 재산화, 공 기극의 박리, 전해질과 grain boundary에 기공형성

Fig. 5. Anode and cathode plate temperature during reversible electrolysis cycle

으로 인한 전해질의 ohmic 저항의 증가가 주요 열 화원인으로 보고되었다^{7,8)}.

양방향 수전해 사이클 평가에 따른 SOEC 및 SOFC 모드에서의 단위전지 연료극 plate 및 공기극 plate의 온도변화는 Fig. 5와 같다. 온도측정은 연료 극 plate 및 공기극 plate의 정중앙에 인코넬 소재의 열전대(Thermocouple)를 삽입하여 측정하였다.

공기극 plate의 온도는 SOEC 모드의 경우 첫 번 째 사이클에서의 온도는 712.3℃, 50번째 사이클의 온도는 713.8℃로 50회 사이클 동안 약 1.5℃ 상승 하였으며, SOFC 모드의 경우 첫 번째 사이클에서의 온도는 714.5℃, 50번째 사이클의 온도는 715.7℃로 50회 사이클 동안 약 1.2℃ 상승하였다. 연료극 plate의 온도는 SOEC 모드의 경우 첫 번째 사이클 에서의 온도는 708.1℃, 50번째 사이클의 온도는 709.4℃로 50회 사이클 동안 약 1.3℃ 상승하였으며, SOFC 모드의 경우 첫 번째 사이클에서의 온도는 710.7℃, 50번째 사이클의 온도는 711.7℃로 50회 사이클 동안 약 1.0℃ 상승하였다. Fig. 3에서 47번 째 사이클 이후부터 SOEC 및 SOFC 모드에서의 셀 전압변화가 이전보다 큰 경향을 보이는 것과 동일 하게 Fig. 5의 온도 변화도 47번째 사이클 이후 온 도변화가 이전의 사이클에 비해 크게 나타났다.

4. 결 론

본 연구에서는 81 cm²급 연료극지지체 평판형 셀 을 적용한 단위전지의 SOFC mode, SOEC mode 및 양방향 수전해 mode에서의 전류-전압(I-V) 특성과 양방향 수전해 사이클 특성 평가를 전기로 온도 700℃ 분위기에서 실시하였다.

 1) 단위전지의 양방향 수전해 전류-전압(I-V) 특성 평가 결과, SOEC 모드는 -40.5 A에서 셀 전압 1.437
 V의 성능을 보였고 SOFC 모드의 경우 40.5 A 및 연 료이용률 55%에서 셀 전압 0.790 V, 출력 32.0 W 및 출력밀도 0.395 W/cm²의 성능을 보였다.

2) 양방향 수전해 전류-전압(I-V) 특성 평가 결과 은 ±26.7 A에서 H₂O 이용률 변화에 따른 셀 전압변 화율은 SOEC 모드가 SOFC 모드에 비해 크게 나타 났다.

3) 양방향 수전해 사이클 50회 실시 결과, 단위전지 의 셀 전압 변화율은 SOEC 모드는 2.59 mV/cycle, SOFC 모드는 -1.72 mV/cycle로 SOEC 모드가 SOFC 모드보다 셀 전압 변화율이 높게 나타남을 알 수 있 었다.

후 기

본 논문은 산업통상자원부의 재원으로 한국에 너지기술평가원(KETEP)의 에너지기술개발사업(No. 20153010130460)과 미래창조과학부의 재원으로 한 국연구재단(No. NRF-2016M1A2A2940138)의 지원 을 받아 수행된 연구이다.

References

- V. N. Nguyen, Q. Fang, U. Packbier, and L. Blum, "Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 4281-4290.
- W. Doenitz and R. Schmidberger, "Concepts and design for scaling up high temperature water vapour electrolysis", Int. J. Hydrogen Energy, Vol. 7, 1982, pp. 55-63.

- A. Hauch, S. H. Jensen, S. Ramousse, M. Mogensen, "Performance and durability of solid oxide electrolysis cells", J. Electrochem. Soc., Vol. 153, 2006, pp. A1741-A1747.
- C. M. Stoots, J. E. O'Brien, K. Condie, L. Moore-McAteer, G. Housley, and J. J. Hartvigsen, J. S. Herring, "The high-temperature electrolysis integrated laboratory experiment", Nucl. Technol., Vol. 166, 2009, pp. 32-42.
- M. Zahid, J. Schefold, and A. Brisse, "Hydrogen and fuel cells, fundamentals, technologies and applications", D. Stolten ed., Wiley-VCH, Weinheim, Germany, 2008, pp. 227-242.
- 6. P. Mocoteguy and A. Brisse, "A review and comprehensive

analysis of degradation mechanisms of solid oxide electrolysis cells", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 15887-15902.

- M. S. Sohal, J. E. O'Brien, C. M. Stoots, V. I. Sharma, B. Yildiz, and A. Virkar, "Degradation issues in solid oxide cells during high temperature electrolysis", J. Fuel Cell Sci. Technol., Vol. 9, 2011, pp. 011017.
- F. Tietz, D. Sebold, A. Brisse, and J. Schefold, "Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation", Journal of Power Sources, Vol. 223, 2013, pp. 129-135.