• Title/Summary/Keyword: Solid oxide cells

Search Result 329, Processing Time 0.024 seconds

Crack-Free Fabrications of Yttria-Stabilized Zirconia Films Using Successive-Ionic-Layer-Adsorption-and-Reaction and Air-Spray Plus Method

  • Taeyoon Kim;Sangmoon Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.79-84
    • /
    • 2024
  • Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 ℃) and furnace (500 ℃) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.

A review of smart exsolution catalysts for the application of gas phase reactions (기상 반응용 스마트 용출 촉매 연구 동향)

  • Huang, Rui;Kim, Hyung Jun;Han, Jeong Woo
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.211-230
    • /
    • 2020
  • Perovskite-type oxides with the nominal composition of ABO3 can exsolve the B-site transition metal upon the controlled reduction. In this exsolution process, the transition metal emerges from the oxide lattice and migrates to the surface at which it forms catalytically active nanoparticles. The exsolved nanoparticles can recover back to the bulk lattice under oxidation treatment. This unique regeneration character by the redox treatment provides uniformly dispersed noble metal nanoparticles. Therefore, the conventional problem of traditional impregnated metal/support, i.e., sintering during reaction, can be effectively avoided by using the exsolution phenomenon. In this regard, the catalysts using the exsolution strategy have been well studied for a wide range of applications in energy conversion and storage devices such as solid oxide fuel cells and electrolysis cells (SOFCs and SOECs) because of its high thermal and chemical stability. On the other hand, although this exsolution strategy can also be applied to gas phase reaction catalysts, it has seldomly been reviewed. Here, we thus review recent applications of the exsolution catalysts to the gas phase reactions from the aspects of experimental measurements, where various functions of the exsolved particles were utilized. We also review non-perovskite type metal oxides that might have exolution phenomenon to provide more possibilities to develop higher efficient catalysts.

Effect of Surface Treatments of Stainless Steels on Oxidation Behavior Under Operating Condition of IT SOFC Interconnect (IT SOFC 인터커넥터 구동 조건에서의 스테인레스 소재의 산화거동에 미치는 표면전처리의 영향)

  • Moon, Min-Seok;Woo, Kee-Do;Kim, Sang-Hyuk;Yoo, Myung-Han
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Solid oxide fuel cells (SOFCs) have many attractive features for widespread applications in generation systems. Recently, stainless steels have attractive materials for metallic bipolar plate because metallic bipolar plates have many benefits compared to others such as graphite and composite bipolar plates. SOFC operates on high temperature of about $800{\sim}1000^{\circ}C$ than other fuel cell systems. Thus, many studies have attempted to reduced the operation temperature of SOFC to about $600{\sim}800^{\circ}C$, which is the intermediate temperature (IT) of SOFC. Low cost and high-temperature corrosion resistance are very important for the practical applications of SOFC in various industries. In this study, two specimens, 304 and 430 stainless steels with and without different pre-surface treatments on the surface were investigated. And, specimens were exposed at high temperature in the box furnace under oxidation atmosphere of $800^{\circ}C$. Oxidation behavior have been investigated with the materials exposed at different times (100 hrs and 400 hrs) by SEM, EDS and XRD. By increasing exposure time, the amount of metal oxide increased in the order like; STS304 < STS430 and As-received < As-polished < Sand-blast specimens.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

A Study on the Proper Number of Banks of Parallel Operation of Transformer in Large-scale Power Plants Using the High Temperature Fuel Cell Considering the Internal Failure (내부고장을 고려한 고온형 연료전지 대규모 발전단지의 병렬운전 변압기 적정 뱅크수에 관한 연구)

  • Chong, Young-Whan;Chai, Hui-Seok;Sung, In-Je;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.26-31
    • /
    • 2014
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we should divide the power plant configuration to several banks. However, the improvement of reliability in fuel cell power plant system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we evaluate the cost for operation and installation, the benefit for electric energy and thermal energy sales, and the system reliability for several cases : these cases relate with the bank configuration.

A Study on the Operation Condition by Electrical Fault in the High Temperature Fuel Cell Plant (고온 연료전지 발전단지의 내부계통 고장에 의한 운전환경에 대한 분석)

  • Chong, Young-Whan;Chai, Hui-Seok;Kim, Jae-Chul;Cho, Sung-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.51-59
    • /
    • 2013
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack, increases in the power output of high temperature fuel cell typically must be made at a slow rate. So, the short time interruption of high temperature fuel cell causes considerable generated energy losses. Because of the characteristic of high temperature fuel cell, we analyzed the impact of electrical fault in the fuel cell plant on other fuel cell generators in the same plant site. A various grounding configuration and voltage sag are analyzed. Finally, we presented the solution to minimize the effect of fault on other fuel cell generators.

Fabrication of Anode-Supported SOFC Single Cells via Tape-Casting of Thin Tapes and Co-Firing (박막 테이프캐스팅과 동시소성에 의한 연료극 지지형 SOFC 단전지 제조)

  • Moon, Hwan;Kim, Sun-Dong;Hyun, Sang-Hoon;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.788-797
    • /
    • 2006
  • An anode-supported SOFC single cell having $5{\mu}m$ thin electrolyte was fabricated cost-effectively by tape casting, laminating, and co-filing of anode (NiO-YSZ), cathode (LSM-YSZ), and electrolyte (YSZ) components. The optimal slurry compositions of the green tapes for SOFC components were determined by an analysis of the mean diameter, the slurry viscosity, the tensile strength/strain of the green tapes, and their green microstructures. The single cells with a dense electrolyte and porous electrodes could be co-fired successfully at $1325\sim1350^{\circ}C$ by controlling the contents of pore former and the ratio of coarse YSZ and fine YSZ in the anode and the cathode. The single cell co-fired at $1350^{\circ}C$ showed $100.2mWcm^{-2}$ of maximum power density at $800^{\circ}C$ but it was impossible to apply it to operate at low temperature because of low performance and high ASR, which were attributed to formation of the secondary phases in the cathode and the interface between the electrolyte and the cathode.

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.511-520
    • /
    • 2016
  • Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.

A Study on the Efficiency of Fuel Cells for Marine Generators (선박 발전기용 연료전지 시스템의 효율에 관한 연구)

  • Lee, Jung-Hee;Kwak, Jae-Seob;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2018
  • Most current ships have adopted on-board diesel generators to produce electricity, but the overall efficiency of equipment is down to about 50% due to thermal losses from operations such as exhaust gas, jacket water cooler, scavenge air cooler, etc. Recently, fuel cells have been highlighted as a promising technology to reduce the effect on the environment and have a higher efficiency. Therefore, this paper suggested a solid oxide fuel cell (SOFC)-gas turbine (GT) using waste heat from a SOFC and SOFC-GT-steam turbine (ST) with Rankine cycle. To compare both configurations, the fuel flow rate, current density, cell voltage, electrical power, and overall efficiency were evaluated at different operating loads. The overall efficiency of both SOFC hybrid systems was higher than the conventional system.

A proposal on SOFC-PEMFC combined system for maritime applications

  • Duong Phan Anh;Ryu Borim;Nguyen Quoc Huy;Lee Jinuk;Kang Hokeun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.162-163
    • /
    • 2022
  • Maritime transportation is going to transfer to alternative fuels as a result of the worldwide demands toward decarbonization and tougher maritime emissions regulations. Methanol is considered as a potential marine fuel, which has the ability to reduce SOx and CO2 emissions, reduce climate change effects, and achieve the objective of green shipping. This work proposes and combines the innovative combination system of direct methanol solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC), gas turbines (GT), and organic Rankine cycles (ORC) for maritime vessels. The system's primary power source is the SOFC, while the GT and PEMFC use the waste heat from the SOFC to generate useful power and improve the system's ability to use waste heat. Each component's thermodynamics model and the combined system's model are established and examined. The multigeneration system's energy and exergy efficiency are 76.2% and 30.3%, respectively. When compared to a SOFC stand-alone system, the energy efficiency of the GT and PEMFC system is increased by 19.2%. The use of PEMFC linked SOFC has significant efficiency when a ship is being started or maneuvered and a quick response from the power and propulsion plant is required.

  • PDF