Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.5.511

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects  

Shin, Eui-Chol (School of Materials Science and Engineering, Chonnam National University)
Ahn, Pyung-An (School of Materials Science and Engineering, Chonnam National University)
Seo, Hyun-Ho (School of Materials Science and Engineering, Chonnam National University)
Lee, Jong-Sook (School of Materials Science and Engineering, Chonnam National University)
Publication Information
Abstract
Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.
Keywords
Ni-YSZ cermet; Current collector; Gas concentration impedance; Humidity effects; General Bisquert model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J. M. Hiller, D. J. Miller, K. Thornton, P. W. Voorhees, S. B. Adler, and S. A. Barnett, "Three-Dimensional Reconstruction of a Solid-Oxide Fuel-Cell Anode," Nat. Mater., 5 [7] 541-44 (2006).   DOI
2 P. Shearing, J. Golbert, R. Chater, and N. Brandon, "3D Reconstruction of SOFC Anodes Using a Focused Ion Beam Lift-Out Technique," Chem. Eng. Sci., 64 [17] 3928-33 (2009).   DOI
3 H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto, R. Kishida, D. Hayashi, K. Matsuzaki, D. Kanno, M. Saito, H. Muroyama, K. Eguchi, N. Kasagi, and H. Yoshida, "Quantification of SOFC Anode Microstructure Based on Dual Beam FIB-SEM Technique," J. Power Sources, 195 [4] 955-61 (2010).   DOI
4 J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto, "Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in $H_2-H_2O$ Atmospheres," J. Electrochem. Soc., 141 [8] 2129-34 (1994).   DOI
5 A. Utz, H. Stormer, A. Leonide, A. Weber, and E. Ivers-Tiffee, "Degradation and Relaxation Effects of Ni Patterned Anodes in $H_2-H_2O$ Atmosphere," J. Electrochem. Soc., 157 [6] B920-30 (2010).   DOI
6 W. G. Bessler, M. Vogler, H. Stormer, D. Gerthsen, A. Utz, A. Weber, and E. Ivers-Tiffee, "Model Anodes and Anode Models for Understanding the Mechanism of Hydrogen Oxidation in Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys., 12 [42] 13888-903 (2010).   DOI
7 E.-C. Shin, P.-A. Ahn, H.-H. Seo, J.-M. Jo, S.-D. Kim, S.-K. Woo, J. H. Yu, J. Mizusaki, and J.-S. Lee, "Polarization Mechanism of High Temperature Electrolysis in a Ni-YSZ/YSZ/LSM Solid Oxide Cell by Parametric Impedance Analysis," Solid State Ionics, 232 80-96 (2013).   DOI
8 M. Vogler, A. Bieberle-Hutter, L. Gauckler, J. Warnatz, and W. G. Bessler, "Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode," J. Electrochem. Soc., 156 [5] B663-72 (2009).   DOI
9 A. M. Sukeshini, B. Habibzadeh, B. P. Becker, C. A. Stoltz, B. W. Eichhorn, and G. S. Jackson, "Electrochemical Oxidation of $H_2$, CO, and $CO/H_2$ Mixtures on Patterned Ni Anodes on YSZ Electrolytes," J. Electrochem. Soc., 153 [4] A705-15 (2006).   DOI
10 M. Liu, M. E. Lynch, K. Blinn, F. M. Alamgir, and Y. Choi, "Rational SOFC Material Design: New Advances and Tools," Mater. Today, 14 [11] 534-46 (2011).   DOI
11 E.-C. Shin, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, S.-D. Kim, S.-K. Woo, J. H. Yu, and J.-S. Lee, "Pinning-down Polarization Losses and Electrode Kinetics in Cermet-Supported LSM Solid Oxide Cells in Reversible Operation," Solid State Ionics, 277 1-10 (2015).   DOI
12 R. de Levie, "On Porous Electrodes in Electrolyte Solutions: I. Capacitance Effects," Electrochim. Acta, 8 [10] 751-80 (1963).   DOI
13 E.-C. Shin, J. J. Ma, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, and J.-S. Lee, "Deconvolution of Four Transmission-Line-Model Impedances in Ni-YSZ/YSZ/LSM Solid Oxide Cells and Mechanistic Insights," Electrochim. Acta, 188 240-53 (2016).   DOI
14 V. Sonn, A. Leonide, and E. Ivers-Tiffee, "Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni/ 8YSZ Cermet Electrodes," J. Electrochem. Soc., 155 B675-79 (2008).   DOI
15 J. Nielsen, T. Klemens, and P. Blennow, "Detailed Impedance Characterization of a Well Performing and Durable Ni: CGO Infiltrated Cermet Anode for Metal-Supported Solid Oxide Fuel Cells," J. Power Sources, 219 305-16 (2012).   DOI
16 T. Ramos, M. Sogaard, and M. B. Mogensen, "Electrochemical Characterization of Ni/ScYSZ Electrodes as SOFC Anodes," J. Electrochem. Soc., 161 [4] F434-44 (2014).   DOI
17 J. Nielsen and J. Hjelm, "Impedance of SOFC Electrodes: A Review and a Comprehensive Case Study on the Impedance of LSM: YSZ Cathodes," Electrochim. Acta, 115 31-45 (2014).   DOI
18 J. Bisquert, "Influence of the Boundaries in the Impedance of Porous Film Electrodes," Phys. Chem. Chem. Phys., 2 [18] 4185-92 (2000).   DOI
19 J. Bisquert, "Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer," J. Phys. Chem. B, 106 [2] 325-33 (2002).   DOI
20 F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Gratzel, "Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye- Sensitized Solar Cells Based on Ionic Liquids," J. Phys. Chem. C, 111 [17] 6550-60 (2007).   DOI
21 J. Mizusaki, H. Tagawa, T. Saito, T. Yamamura, K. Kamitani, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto, "Kinetic Studies of the Reaction at the Nickel Pattern Electrode on YSZ in $H_2-H_2O$ Atmospheres," Solid State Ionics, 70 52-8 (1994).
22 F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, "Characterization of Nanostructured Hybrid and Organic Solar Cells by Impedance Spectroscopy," Phys. Chem. Chem. Phys., 13 [20] 9083-118 (2011).   DOI
23 J. Bisquert, I. Mora-Sero, and F. Fabregat-Santiago, "Diffusion-Recombination Impedance Model for Solar Cells with Disorder and Nonlinear Recombination," ChemElectroChem, 1 [1] 289-96 (2014).   DOI
24 J. Mizusaki, K. Amano, S. Yamauchi, and K. Fueki, "Electrode Reaction at $Pt,O_2(g)$/Stabilized Zirconia Interfaces. Part I: Theoretical Consideration of Reaction Model," Solid State Ionics, 22 [4] 313-22 (1987).   DOI
25 J. Mizusaki, K. Amano, S. Yamauchi, and K. Fueki, "Electrode Reaction at $Pt,O_2(g)$/Stabilized Zirconia Interfaces. Part II: Electrochemical Measurements and Analysis," Solid State Ionics, 22 [4] 323-30 (1987).   DOI
26 J. Mizusaki and H. Tagawa, "Microstructure and Electrochemical Property relationship for $O_2$ Reduction in Zirconia Cells," pp. 75-87 in Proc. of the Symposium on High Temperature Electrode Materials and Characterization. Eds. by D. D. MacDonald and A. C. Khandkar, Vol. 91-6. The Electrochem. Soc., Pennington, NJ, 1991.
27 J. Mizusaki, H. Tagawa, K. Isobe, M. Tajika, I. Koshiro, H. Maruyama, and K. Hirano, "Kinetics of the Electrode Reaction at the $H_2-H_2O$ Porous Pt/Stabilized Zirconia Interface," J. Electrochem. Soc., 141 [6] 1674-83 (1994).   DOI
28 A. Leonide, B. Ruger, A. Weber, W. Meulenberg, and E. Ivers-Tiffee, "Impedance Study of Alternative $(La,Sr)FeO_{3-{\delta}}$ and $(La,Sr)(Co,Fe)O_{3-{\delta}}$ MIEC Cathode Compositions," J. Electrochem. Soc., 157 B234-39 (2010).   DOI
29 J. Mizusaki, "Model for Solid Electrolyte Gas Electrode Reaction Kinetics; Key Concepts, Basic Model Construction, Extension of Models, New Experimental Techniques for Model Confirmation, and Future Prospects," Electrochemistry, 82 [10] 819-29 (2014).   DOI
30 W. Bessler, "Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes I. Stagnation Point Flow Geometry," J. Electrochem. Soc., 153 A1492-54 (2006).   DOI
31 S.-H. Moon, D.-C. Cho, D. T. Nguyen, E.-C. Shin, and J.-S. Lee, "A Comprehensive Treatment of Universal Dispersive Frequency Responses in Solid Electrolytes by Immittance Spectroscopy: Low Temperature AgI Case," J. Solid State Electrochem., 19 [8] 2457-64 (2015).   DOI
32 G.-R. Kim, H.-H. Seo, J.-M. Jo, E.-C. Shin, J. H. Yu, and J.-S. Lee, "Moving Boundary Diffusion Problem for Hydration Kinetics Evidenced in Non-Monotonic Conductivity Relaxations of Proton Conducting Perovskites," Solid State Ionics, 272 60-73 (2015).   DOI
33 M. Guillodo, P. Vernoux, and J. Fouletier, "Electrochemical Properties of Ni-YSZ Cermet in Solid Oxide Fuel Cells: Effect of Current Collecting," Solid State Ionics, 127 [1] 99-107 (2000).   DOI
34 J.-H. Kim, E.-C. Shin, D.-C. Cho, S. Kim, S. Lim, K. Yang, J. Beum, J. Kim, S. Yamaguchi, and J.-S. Lee, "Electrical Characterization of Polycrystalline Sodium ${\beta}-Alumina: Revisited and Resolved," Solid State Ionics, 264 22-35 (2014).   DOI
35 S. Primdahl and M. Mogensen, "Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes," J. Electrochem. Soc., 145 [7] 2431-38 (1998).   DOI
36 S.-H. Moon, Y. H. Kim, D.-C. Cho, E.-C. Shin, D. Lee, W. B. Im, and J.-S. Lee, "Sodium Ion Transport in Polymorphic Scandium NASICON Analog $Na_3Sc_2(PO_4)_3$ with New Dielectric Spectroscopy Approach for Current-Constriction Effects," Solid State Ionics, 289 55-71 (2016).   DOI
37 J.-S. Lee, "A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects," J. Korean Ceram. Soc., 53 [2] 150-61 (2016).   DOI
38 J. Bisquert and A. Compte, "Theory of the Electrochemical Impedance of Anomalous Diffusion," J. Electroanal. Chem., 499 [1] 112-20 (2001).   DOI
39 S. Primdahl and M. Mogensen, "Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes," J. Electrochem. Soc., 146 2827-33 (1999).   DOI
40 W. Bessler and S. Gewies, "Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes II. Channel Geometry," J. Electrochem. Soc., 154 B548-59 (2007).   DOI
41 P.-A. Ahn, E.-C. Shin, G.-R. Kim, and J.-S. Lee, "Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena," J. Korean Ceram. Soc. 48 [6] 549-58 (2011).   DOI
42 P.-A. Ahn, E.-C. Shin, J.-M. Jo, J. H. Yu, S.-K. Woo, and J.-S. Lee, "Mixed Conduction in Ceramic Hydrogen/Steam Electrodes by Hebb-Wagner Polarization in the Frequency Domain," Fuel Cells, 12 1070-84 (2012).   DOI