• Title/Summary/Keyword: Solid mechanics

Search Result 406, Processing Time 0.028 seconds

Numerical and experimental study on the scale effect of internal solitary wave loads on spar platforms

  • Wang, Xu;Zhou, Ji-Fu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.569-577
    • /
    • 2020
  • Based on laboratory experiments and numerical simulations, the scale effect of Internal Solitary Wave (ISW) loads on spar platforms is investigated. First, the waveforms, loads, and torques on the spar model at a laboratory obtained by the experiments and simulations agree well with each other. Then, a prototype spar platform is simulated numerically to elucidate the scale effect. The scale effect for the horizontal forces is significant owing to the viscosity effect, whereas it is insignificant and can be neglected for the vertical forces. From the similarity point of view, the Froude number was the same for the scaled model and its prototype, while the Reynolds number increased significantly. The results show that the Morison equation with the same set of drag and inertia coefficients is not applicable to estimate the ISW loads for both the prototype and laboratory scale model. The coefficients should be modified to account for the scale effect. In conclusion, the dimensionless vertical forces on experimental models can be applied to the prototype, but the dimensionless horizontal forces of the experimental model are larger than those of the prototype, which will lead to overestimation of the horizontal force of the prototype if direct conversion is implemented.

Special Issue on computational methods in engineering (CILAMCE 2018 - Paris/Compiegne)

  • Ibrahimbegovic, Adnan;Pimenta, Paulo M.
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.95-98
    • /
    • 2019
  • This special issue contains selected papers first presented in a short format at the Congress CILAMCE 2018 ($39^{th}$ Ibero-Latin American Congress on Computational Methods in Engineering) held in Paris and in $Compi{\grave{e}}gne$, France, from 11 to 14 November 2018.

Hybrid Representations for Enveloping Modeling in Gearing

  • Voznyuk, Roman
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.13-17
    • /
    • 2003
  • Hybrid method of representing geometric entities as combination of boundary (B-rep) and functional (F-rep) representations is presented which can be used as a basis of solid modeling kernel. It contains whole functionality of classic B-rep kernel, and also supports enveloping (sweep of solid body). Principles and keysolutions are considered. Example of a real task that comes from gearing is provided.

Influence of ZnO-Nb2O5 Substitution on Microwave Dielectric Properties of the ZrTi04 System

  • Kim, Woo-Sup;Kim, Joon-Hee;Kim, Jong-Han;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.346-349
    • /
    • 2003
  • Microwave dielectric characteristics and physical properties of the new Zr$_{1-x}$ (Bn$_{1}$3/Nb$_{2/3}$)xTi $O_4$ (0.2$\leq$x$\geq$ 1.0) system have been investigated as a function of the amount of Bn$_{1}$3/Nb$_{2/3}$ $O_2$substitution. With increasing Bn$_{1}$3/Nb$_{2/3}$ $O_2$ content (x), two phase regions were observed: $\alpha$-Pb $O_2$ solid solution (x<0.4), mixture of the rutile type Zn$_{1}$3/Nb$_{2/3}$Ti $O_4$ and the $\alpha$-Pb $O_2$ solid solution (x$\geq$0.4). In the$\alpha$-Pb $O_2$solid solution region below x<0.4, the Q.f$_{0}$ value sharply increased and the Temperature Coefficient of the Resonant Frequency(TCF) decreased with increasing Bn$_{1}$3/Nb$_{2/3}$ $O_2$ contents while dielectric constant (K) showed nearly same value. In the mixture region above x$\geq$4, the dielectric constant and TCF increased with increasing Bn$_{1}$3/Nb$_{2/3}$ $O_2$ content. Zr$_{1-x}$ (Zn$_{1}$3/Nb$_{2/3}$)xTi $O_4$ materials have excellent microwave dielectric properties with K=44.0, Q.f$_{0}$ : 41000 GHz and TCF =-3.0 ppm/$^{\circ}C$ at x=0.35.=0.35. x=0.35.=0.35.

Nanomechanical properties and wear resistance of dental restorative materials

  • Karimzadeh, A.;Ayatollahi, Majid R.;Nikkhooyifar, M.;Bushroa, A.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.819-826
    • /
    • 2017
  • The effects of thermocycling procedure and material shade on the mechanical properties and wear resistance of resin-based dental restorative materials are investigated. The modulus of elasticity, hardness, plasticity index and wear resistance are determined for the conventional composite, the nanohybrid composite and the nanofilled dental composites. Disc-shape samples are prepared from each material to investigate the effects of thermocycling procedure on the mechanical properties and wear resistance of different types of dental restorative materials. In this respect, a group of samples is thermocycled and the other group is stored in ambient conditions. Then nano-indentation and nano-scratch tests are performed on the samples to measure their mechanical properties and wear resistance. Results show that the A1E shade of the dental nanocomposite possesses higher modulus of elasticity and hardness values compared to the two other shades. According to the experimental results, the mean values for the modulus of elasticity and hardness of the A1E shade of the nanocomposite are 13.71 GPa and 1.08 GPa, respectively. The modulus of elasticity and hardness of the conventional dental composite increase around 30 percent in the oral environment due to the moisture and temperature changes. The wear resistance of the dental composites is also significantly affected by moisture and temperature changes in the oral conditions. It is observed that thermocycling has no significant effect on the hardness, plasticity index and wear resistance of the nanohybrid composite and the nanocomposite dental materials.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core

  • Mohammad Safari;Mehdi Mohammadimehr;Hossein Ashrafi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, forced vibration behavior of a piezo magneto electric sandwich Timoshenko beam is investigated. It is assumed a sandwich beam with porous core and graphene platelet reinforced composite (GPLRC) in facesheets subjected to magneto-electro-elastic and temperature-dependent material properties. The magneto electro platelets are under linear function along with the thickness that includes a cosine function and magnetic and electric constant potentials. The governing equations of motion are derived using modified strain gradient theory for microstructures. The effects of material length scale parameters, temperature change, different distributions of porous, various patterns of graphene platelets, and the core to face sheets thickness ratio on the natural frequency and excited frequency of a sandwich Timoshenko beam are scrutinized. Various size-dependent methods effects such as MSGT, MCST, and CT on the natural frequency is considered. Moreover, the final results affirm that the increase in porosity coefficient and volume fractions lead to an increase in the amount of natural frequency; while vice versa for the increment in the aspect ratio. From forced vibration analysis, it is understood that by increasing the values of volume fraction and the length thickness of GPL, the maximum deflection of a sandwich beam decreases. Also, it is concluded that increasing the temperature, the thickness of GPL, and the initial force leads to a decrease in the maximum deflection of GPL. It is also shown that resonance phenomenon occurs when the natural and excitation frequencies become equal to each other. Outcomes also reveal that the third natural frequency owns the minimum value of both deflection and frequency ratio and the first natural frequency has the maximum.

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Point interpolation method based on local residual formulation using radial basis functions

  • Liu, G.R.;Yan, L.;Wang, J.G.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.713-732
    • /
    • 2002
  • A local radial point interpolation method (LRPIM) based on local residual formulation is presented and applied to solid mechanics in this paper. In LRPIM, the trial function is constructed by the radial point interpolation method (PIM) and establishes discrete equations through a local residual formulation, which can be carried out nodes by nodes. Therefore, element connectivity for trial function and background mesh for integration is not necessary. Radial PIM is used for interpolation so that singularity in polynomial PIM may be avoided. Essential boundary conditions can be imposed by a straightforward and effective manner due to its Delta properties. Moreover, the approximation quality of the radial PIM is evaluated by the surface fitting of given functions. Numerical performance for this LRPIM method is further studied through several numerical examples of solid mechanics.