• 제목/요약/키워드: Solid loading

검색결과 424건 처리시간 0.026초

DAF 공정을 이용한 축산폐수의 고형물 분리와 부상특성 (Solid Separation and Flotation Characteristics of Livestock Wastewater Using DAF Process)

  • 강병준;유승준;이세일;곽동희
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.359-366
    • /
    • 2008
  • The series of experiments under the various conditions were carried out to evaluate the feasibility of dissolved air flotation (DAF) as an alternative of conventional gravity sedimentation (CGS) and to investigate the decrease of the loadings following to biological wastewater treatment processes in livestock wastewater system. On the basis of the experiment result between CGS and DAF processes, for the other water quality criteria as well as suspended solid the removal efficiency of DAF process was about 20~25 % better than CGS process on average. In addition, the particle removal efficiency of DAF process became higher in proportion as the increase of air to solid (A/S) ratio and the general wastewater treatment efficiency of DAF process was enough to meet the requirement of loading decrease to following biological process even at low A/S ratio range. Though DAF process is widely known as an solid separation unit, there was not the notable relationship between particle separation efficiency and several pollutant removal efficiencies like $COD_{Cr}$ and nutrients (T-N, T-P). Assume that the $COD_{Cr}$ was removed as the fraction of particle separation in this experiment, the removal efficiency of T-N and T-P were sensitive to removal efficiency of $COD_{Cr}$, especially.

가시광선/근적외선 분광분석법을 이용한 사과의 당도 및 경도 측정 (Prediction of Soluble Solid and Firmness in Apple by Visible/Near-Infrared Spectroscopy)

  • 최창현;이강진;박보순
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.256-265
    • /
    • 1997
  • The objectives of this study were to examine the ability to predict soluble solid and firmness in intact apples based on the visible/near-infrared spectroscopic technique. Two cultivars of apples, Delicious and Gala, were handled, tested and analyzed separately. Reflectance spectra, Magness-Tayor (MT) firmness, and soluble solids in apples were measured sequentially. Maximum and minimum diameters, height, and weight of apples were recorded before the MT firmness tests. A spectrophotometer was used to collect reflectance spectra of intact apples over a wavelength range of 400 to 2, 498 nm. The W firmness tests were conducted using a standard 11.1mm (7/16 in.) MT probe mounted in an Instron universal testing machine. A digital refractormeter was used to measure soluble solid contents in the apples. Apple samples were divided into a calibration set and a prediction set. The calibration set was used during model development, and the prediction set was used to predict soluble solids and firmness from unknown spectra. The method of partial least square (PLS) analysis was used. An unique set of PLS loading vectors (factors) was developed for soluble solid content and firmness. The PLS model showed good correlations between predicted and measured soluble solids of intact apples in 860~1078 nm of the wavelengths. However, the PLS analysis was not good enough to predict the apple firmness.

  • PDF

Temperature-Induced Release of All-trans-Retinoic Acid Loaded in Solid Lipid Nanoparticles for Topical Delivery

  • Lee, Chang-Moon;Jeong, Hwan-Jeong;Park, Ji-Won;Kim, Jin;Lee, Ki-Young
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.682-685
    • /
    • 2008
  • The aim of this work was to develop and evaluate solid lipid nanoparticles (SLN) containing all-trans-retinoic acid (ATRA) for topical delivery. SLN composed of coconut oil and curdlan improved the suspension instability of ATRA in aqueous solution. The photodegradation of ATRA by light was reduced by incorporation in SLN. The loading efficiency of ATRA in SLN was higher than 95% (w/w). The amounts of ATRA released from SLN at $4^{\circ}C$ and at $37^{\circ}C$ were less than 15% and more than 60% (w/w) for 96 h, respectively. The ATRA-loaded SLN can be used as a potential carrier for topical delivery.

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

내부연결방식 임플랜트 시스템의 삼차원 유한요소법적 연구 (THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF INTERNALLY CONNECTED IMPLANT SYSTEMS)

  • 김유리;조혜원;이재봉
    • 대한치과보철학회지
    • /
    • 제44권1호
    • /
    • pp.85-102
    • /
    • 2006
  • Statement of problem: Currently, there are some 20 different geometric variations in implant/abutment interface available. The geometry is important because it is one of the primary determinants of joint strength, joint stability, locational and rotational stability. Purpose: As the effects of the various implant-abutment connections and the prosthesis height variation on stress distribution are not yet examined this study is to focus on the different types of implant-abutment connection and the prosthesis height using three dimensional finite element analysis. Material and method. The models were constructed with ITI, 3i TG, Bicon, Frialit-2 fixtures and solid abutment, TG post, Bicon post, EstheticBase abutment respectively. And the super structures were constructed as mandibular second premolar shapes with 8.5 mm, 11 mm, 13.5 mm of crown height. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the central pit of an occlusal surface. von Mises stresses were recorded and compared in the crowns, abutments, fixtures. Results: 1. Under the oblique loading, von Mises stresses were larger in the crown, abutment, fixture compared to the vertical loading condition. 2. The stresses were increased proportionally to the crown height under oblique loading but showed little differences with three different crown heights under vertical loading. 3. In the crown, the highest stress areas were loading points under vertical loading, and the finish lines under oblique loading. 4. Under the oblique loading, the higher stresses were located in the fixture/abutment interface of the Bicon and Frialit-2 systems compared to the ITI and TG systems. Conclusions: The stress distribution patterns of each implant-abutment system had difference among them and adequate crown height/implant ratio was important to reduce the stresses around the implants.

수성 알루미나/탄화규소 슬러리의 동결주조와 층상복합체의 제조: (I) 슬러리의 분산과 유동성 (Freeze Casting of Aqueous Alumina/Silicon Carbide Slurries and Fabrication of Layered Composites: (I) Dispersion and Rheology of Slurries)

  • 양태영;조용기;김영우;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.99-104
    • /
    • 2008
  • Zeta potential, sedimentation bulk density and rheology in the dispersion system have been studied in terms of solid loading (40-55 vol%), and types of additives. Ammonium polymethacrylate, glycerol, ethoxylated acetylenic diol, and polyvinyl alcohol have been used as the dispersant, cryo-protectant, surfactant, and binder, respectively. Sedimentation density greatly increased upon adding dispersant; the effect was more pronounced with ionic alumina suspension compared with covalent silicon carbide. With further addition of cryo-protectant and surfactant to dispersant, the sedimentation density increased somewhat. The suspension viscosity generally behaviored in an opposite manner to the sedimentation density, i.e., high sedimentation gave low high-shear viscosity, indicative of low order structure formation in the suspended particles. Shear rate rheology in shear rate of $2-300\;sec^{-1}$ showed a shear thinning and its onset began at similar shear rate (${\sim}100\;sce^{-1}$), regardless of solid loading.

페라이트 분말의 분무건조와 제조된 과립의 특성 (Spray Drying of Ferrite Powders and the Characteristics of the Granule)

  • 변순천;제해준;홍국선
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.549-558
    • /
    • 1995
  • Mn-Zn ferrite granules were prepared by spray drying of the slurry containing different kinds and concentration of binders at various spray drying temperatures and atomizing pressures. The characteristics of the spraydried granules were analyzed according to the processing variables of spray drying and the slurries containing different solid loading and kinds and concentration of binders. Typical shape of the spray dried granules was spherical. The granules spray dried at 15$0^{\circ}C$ were more spherical and containing lower hollow percentage than any other granules prepared at higher temperature. The granules prepared at higher atomizing pressures were more spherical and become smaller in size. The granules prepared using slurry containing higher solid loading were larger in size and less defective in shape. As increasing the concentration of binder the number of donut-shaped granules was increased and the size distribution become broader. The granules prepared using the slurry containing PVA 205 were more spherical than those containing PVA 217 and PVA 117. As the amount of granules which were donut-shaped or dimpled increased the compaction response were less effective. The hollows were not fractured completely even at hight pressures and remained after sintering.

  • PDF

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

합류식 하수관거내 우오수분리벽 설치에 따른 부유물질 제어효과 (Effect of separation walls on reduction of suspended solids loading in a combined sewer system)

  • 권충진;임봉수
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.787-796
    • /
    • 2012
  • The purpose of this study is to investigate CSOs(combined sewer overflows) control in the combined sewer with/without separation wall. There is the high correlation between sewage velocity and suspended solid(SS) loading in the sewer without it. The SS/BOD ratio was about 3 times in the area with it, while it was about 5 times in the area without it. Therefore, the accumulated deposit within the sewer has influenced high SS loading in the sewer without it. This study showed that the separation wall installed acquired an acceptable efficiency in controlling the accumulated deposit in the combined sewer. According to this study, the BOD control effect was about 38 % in the sewer with the separation wall, whereas it showed about 24 % in the sewer without it. In this case, it was anticipated that the high pollutant control effect would be expected if the separation wall was installed in the combined sewer.