• Title/Summary/Keyword: Solid height

Search Result 272, Processing Time 0.019 seconds

Fruit Characteristics and Yield according to the Age of "Cheonhwang" Jujube Trees (Zizyphus jujuba var. inermis) (대추나무 '천황'의 수령에 따른 과실품질과 수확량)

  • Park, Seong-In;Chul-Woo Kim;Yoo, Hui-Won;Lee, Uk;Ahn, Young-Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.548-556
    • /
    • 2022
  • In this study, basic data were obtained to determine the optimal cultivation method to achieve stable fruiting and yield increase in "Cheonhwang" jujube trees. Accordingly, thefructification, fruit characteristics, and yield according to tree age were analyzed. The mean (and range of) tree height, crown area, stem diameter near the root, clear stem length, number of main branches, and distance between main branches were 235.6 (217.4-253.8) cm, 3.5 (3.1-4.1) m2, 5.5 (4.0-7.1) cm, 70.6 (66.2-72.7) cm, 9.7 (8.6-10.5), and 10.4 (7.9-14.2) cm, respectively. Correlationanalysis results indicated that tree age was positively correlated with crown area, stem diameter near the root, and clear stem length but not with the number of main branches. The mean number (and range) of fruit per fruit-bearing mother shoot and tree were 18.3 (16.7-18.3) and 170.7 (157.9-178.3), respectively. Tree age was not significantlycorrelated with fruiting characteristics (i.e., the numbers of fruit-bearing mother shoots per main branch, fruit-bearing shoots per fruit-bearing mother shoot, fruit per fruit-bearing shoot, and fruit per tree). Given that the shape of jujube trees is constantly managed according to the growing area and greenhouse type, the tree growth characteristics were more affected by tree management techniques than by tree age. The mean (and range of) fruit weight, fruit hardness, and soluble solid content were 28.6 (27.7-30.3) g, 29.4 (28.5-30.4) N, and 20.4 (19.3-21.0) °brix, respectively, and these fruit characteristics were not significantly correlated with tree age.The average yield per tree of the 'Cheonhwang' jujube cultivar was 4.9 (4.8-5.0) kg, which was not significantly correlated with tree age.

Nutrient Uptake Rate, Growth and Yield of Strawberry in Aquaponics (아쿠아포닉스 재배에서 딸기의 양분흡수율, 생육 및 수량)

  • Min-Kyung Kim;Su-Hyun Choi;Seo-A Yoon;Jong-Nam Lee;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • This study aimed to compare the nutrient uptake rate, growth and yield of strawberry grown under the aquaponic and hydroponic systems in a plant factory. For aquaculture, 12 of fish (Cyprinus carpio cv. Koi) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5L of water at a density of 5.44 kg·m-3. The 30 seedlings of strawberry were planted in ports filled with perlite substrate and then were placed on the bed (W 0.7 m × L 1.5 m × H 0.22 m) at the top of the aquaponics system, and the 30 seedlings were planted in net-pots and then placed on the holes of acrylic plates (140 cm × 60 cm, Ø80 mm) on the bed (W 0.7 m × L 1.5 m × H 0.22 m) at the deep flow technique (DFT)- hydroponics. The pH and EC of the aquaponic solution was ranged from 4.3 to 6.9 and 0.32 to 1.14 dS·m-1, respectively, while those of hydroponics were ranged from 5.1 to 7.5 and 1.0-1.8 dS·m-1, respectively. The NO3-N and NH4-N concentration of the aquaponic solution were higher about 3.6 and 2.2 me·L-1 than those of the standard hydroponic solution for strawberry cultivation. The P, Ca, Mg, and S ions in the aquaponic solution were also higher about 0.76, 3.1, 0.8, and 0.9 me·L-1 than those of standard hydroponic solution, respectively, while the K and Fe were lower about 0.8 me·L-1 and 0.5 mg·L-1, respectively. The mineral contents of the strawberry leaves grown on aquaponics did not differ from that of hydroponics, and K content in the leaves were in an appropriate range. Uptake rates of T-N and P between the 58 and 98 days after transplant (DAT) were 1.5 and 1.9-fold higher in the aquaponics than those of hydroponics, respectively with no significant difference in the uptake rate of K. The crown diameter, plant height, and leaf length and width in the 98 DAT were significantly higher in aquaponics. The number of fruits per plant was significantly higher in aquaponics than those in hydroponics, and the fresh and dry weights of fruit and length and width of fruit were significantly higher in hydroponics. The results suggest that plants in aquaponics continuously utilize fertilizer components of solid particles from fish and feed wastes.